TABLE of CONTENTS

1 HOW TO CONTACT US ... 6
 1.1 LIMITED PRODUCT WARRANTY .. 6
 1.1.1 Warranty Terms ... 6
 1.1.2 Warranty Procedure .. 6
 1.2 FCC NOTIFICATION .. 7
 1.3 REGULATORY COMPLIANCES .. 7

2 ITX 3000/2000 OVERVIEW .. 8
 2.1 Introduction ... 8
 2.2 Product Description .. 8
 2.3 Choosing FGL Emulation or Raster Graphics Mode ... 9
 2.3.1 Programmer’s Notes: .. 9
 2.3.2 Managing Barcodes ... 9
 2.3.3 Detailed Printer Data .. 10
 2.4 MODEL NUMBERING SYSTEM .. 11
 2.4.1 ITX Printer Model Numbers: ... 11
 2.4.2 ITX Power Supply Model Number ... 12
 2.4.3 Example of an ITX 2000 and 3000 Printer Model Number 12
 2.4.4 ITX Power Supply Options ... 12
 2.4.5 ITX Separate Component Model Numbers ... 13

3 PREPARATION FOR USE .. 14
 3.1 Unpacking and Inspection ... 14
 3.2 Installation Location .. 14
 3.3 Power Connection ... 14
 3.4 Data I/O Interface Connection ... 14
 3.4.1 Data I/O Interface Connection – Parallel IEEE-1284 .. 14
 3.4.2 Data I/O Interface Connection – Serial RS232 ... 14
 3.4.3 Data I/O Interface Connection – USB 2.0 Full Speed ... 14
 3.5 Adjustable Width Ticket Printers – Models with “A” and “AS” Suffixes 15
 3.6 Ticket Stock Supply ... 15
 3.7 Ticket Stock Loading ... 15
 3.8 Auto-Sizing ... 15
 3.9 Test Print .. 15
 3.10 Printer Set-up Confirmation ... 15
 3.10.1 Configuration Settings .. 15
 3.10.2 EEPROM Settings .. 15
 3.10.3 Configuring the Printer’s Data Interface: ... 15
 3.10.4 Print Speed Selection ... 16
 3.10.5 Is a Printer Driver Required? .. 16

4 OPERATOR CONTROLS and INDICATORS ... 17
 4.1 Rear I/O Panel .. 17
 4.1.1 Data Interface Module Details .. 17
 4.2 Switch and Display Panel .. 18
 4.3 Panel LED Indicators ... 18
 4.3.1 Power/Paper ... 18
 4.3.2 Ready ... 18
 4.3.3 Attn/Err ... 18
 4.4 Panel Switches .. 19
 4.5 Panel Switch Operations .. 19
 4.5.1 Offline Operations .. 19
 4.5.2 Power-On Operations ... 19

5 PRINTER PROGRAMMABLE CONFIGURATION SETTINGS .. 23
 5.1 Overview .. 23
 5.1.1 Factory Settings ... 23
 5.1.2 Special Customization ... 23
5.13 EEPROM Parameter Storage Memory ... 23

6 PRINTER STATUS INFORMATION .. 24
6.1 ITX Printer Status Overview ... 24
6.2 Operator Status .. 24
6.3 Port Level Interface Status .. 24
6.4 Reverse Channel Status - Printer Status Programmer’s Information for Windows ... 24

7 DATA INTERFACE AND AUXILIARY I/O ... 25
7.1 IEEE-1284 Parallel Interface Cable ... 25
7.1.1 Parallel Port Signaling .. 25
7.1.2 Parallel Interface Cable Schematic ... 25
7.1.3 Parallel Interface Cable Quality ... 25
7.1.4 Parallel Interface Card Assembly ... 25
7.1.5 Parallel Interface Pin-out Table ... 25
7.2 RS232 Serial Interface ... 27
7.2.1 RS-232 Serial Interface Card Assembly ... 27
7.2.2 Serial DIP-Switch Settings ... 27
7.2.3 Serial Interface Pin-out .. 27
7.3 USB Interface .. 28
7.3.1 USB Interface Pin-out Table ... 28
7.3.2 USB Interface Cable .. 28
7.4 Auxiliary I/O Connector .. 28

8 TICKET STOCK HANDLING OPTIONS .. 29
8.1 Ticket Separation/Delivery Options ... 29
8.1.1 Cutter/Ejector or Tearbar – uITX Desktop Model ... 29
8.1.2 Cutter/Stacker-Retainer or Tearbar – pITX Countertop Mountable Model 29
8.1.3 Cutter/Ejector - kITX Kiosk Mountable Model .. 29
8.1.4 Cutter/Ejector - eITX Desktop Model (with Ticket Enclosure Cabinet) 29
8.2 Low Ticket Stock (Paper) Monitoring – Auxiliary Input Port 29
8.2.1 Low Ticket Stock (Paper) Host Status Information 29
8.2.2 Printer Reactions to the Low Ticket Stock (Paper) Condition 29
8.2.3 Ticket Holder with Low Ticket Detection .. 30

9 TICKET STOCK INFORMATION ... 31
9.1 Ticket Stock Specifications .. 31
9.1.1 Form Type ... 31
9.1.2 Ticket Stock - Thermal Paper Types: ... 31
9.1.3 Ticket Stock - Paper Converter Vendor List .. 31
9.1.4 Ticket Stock Drawing (ITX 2/3002/3Fixed & ITX 2/3004AS Adjustable Width “AS” Suffix Models) ... 33
9.1.5 Ticket Stock Drawing (ITX 2/3003A & ITX 2/3004A - Adjustable Width “A” Suffix Models) ... 33
9.1.6 Ticket Stock Drawing – Common to all ITX Printer Models 34
9.1.7 Stock Width .. 34
9.1.8 Stock Thickness .. 34
9.1.9 Perforations .. 34
9.1.10 Registration Marks ... 34
9.1.11 Ticket Length .. 35
9.1.12 Ticket Stock Pre-Printing Information ... 35
9.1.13 Example 2.0” Length Ticket Drawing for Fixed Width and “AS” Adjustable Width printers ... 36
9.1.14 Example 5.5” Length Ticket Drawing for Fixed Width and “AS” Adjustable Width printers ... 36
9.2 Ticket Stock Thermal Response Characteristics .. 37
9.2.1 Print Activation Energy .. 37
9.3 Ticket Position Optical Sensors .. 37
9.3.1 Sensor Location: ITX 2000/3000 – Fixed Width Models 38
9.3.2 Sensor Location: ITX 2003A/2004A/3003A/3004A – Adjustable Width Models ... 38
9.3.3 Sensor Location: ITX 2004AS/3004AS – Adjustable Width Models 38
9.3.4 Sensor Position Adjustments ... 38
9.3.5 Cutting Behind the Perforation ... 39
9.4 Ticket Form Length Determination .. 40
9.4.1 Printer Ticket Length Determination ... 40

10 EEPROM PARAMETER STORAGE MEMORY ... 41
10.1 EEPROM Parameter Memory Overview .. 41
10.2 EEPROM Change Menu Entry .. 41
18.4 Printer Language: ... 63
18.5 Printer Driver: .. 63
18.6 Printer Status Monitoring: .. 63
18.7 Ticket Stock: ... 64
18.7.1 Thermal Coating: ... 64
18.7.2 Registration Marks: .. 64
18.8 Conversion Process Steps: .. 64
18.9 ITX, ETX 2000 to ITX 2000 Model Number and Part Number Cross Reference Table 65

19 APPENDIX .. 67
19.1 IEEE 1284 Parallel A-B Cable Schematic ... 67
19.2 ITX 3000/2000 Mechanical Drawings .. 68
19.2.1 Mechanical Detail Drawing: uITX Desktop Printer (2.00" and 3.25") .. 68
19.2.2 Mechanical Detail Drawing: uITX Desktop Printer (4.00" A and AS Models) 68
19.2.3 Mechanical Detail Drawing: pITX Countertop Printer (2.00" and 3.25") ... 69
19.2.4 Mechanical Detail Drawing: pITX Countertop Printer (4.00" - AT Model) 69
19.2.5 Mechanical Detail Drawing: pITX Countertop Printer (4.00" - AST Model) 70
19.2.6 Mechanical Detail Drawing: kITX Kiosk Printer (2.00" and 3.25") ... 70
19.2.7 Mechanical Detail Drawing: kITX Kiosk Printer (2/3.25-AC Model) .. 71
19.2.8 Mechanical Detail Drawing: kITX Kiosk Printer (4.00" - AC Model) ... 71
19.2.9 Mechanical Detail Drawing: kITX Kiosk Printer (4.00" - ASC Model) ... 72
19.2.10 Mechanical Detail Drawing: eITX Desktop Printer (with ticket enclosure cabinet) 72
19.2.11 Mechanical Detail Drawing: pITX Countertop cutout (2.00" and 3.25") .. 73
19.2.12 Mechanical Detail Drawing: pITX Countertop cutout (4.00" Model) .. 73
19.2.13 Mechanical Detail Drawing: PS60-14 - ITX Power Supply .. 74
19.2.14 Mechanical Detail Drawing: PS60-H Mounting Bracket ... 74
19.2.15 kITX Optional Bottom Mounting Plate (2.00" and 3.25") .. 75
19.2.16 kITX Optional Bottom Mounting Plate (4.00") .. 75
19.2.17 kITX Optional Side Mounting Rails ... 76
19.2.18 Output Ticket Baskets: .. 76
19.2.19 pETX to pITX Countertop Adapter Plate - Model ITX-APETX0 .. 77
19.2.20 Ticket Holder w/ Low Paper Sensor ... 77
19.3 Electrical Circuits .. 78
19.3.1 Typical Output Driver Application Circuits .. 78
19.4 Registration Mark Location/Sensor Position - MathCad Template (V1.01) .. 79
1 HOW TO CONTACT US.

PRACTICAL AUTOMATION INC.
The Alinabal Group of Companies
45 Woodmont Road
P.O. Box 3028
Milford, CT 06460
VOICE: (203) 882-5640
FAX: (203) 882-5648
EMAIL: pa@practicalautomation.com
INTERNET: http://www.practicalautomation.com

1.1 LIMITED PRODUCT WARRANTY

1.1.1 Warranty Terms
Practical Automation, Inc. warrants each new ITX series printer to be free from defects in materials and workmanship to the original purchaser. Our responsibility is limited to repair or replacement of the printer and/or accessory or part thereof at our option for a period of one year from the date of shipment.

This limited warranty does not extend to any defect, malfunction or failure caused by or resulting from improper service, packing, maintenance or repair, abuse, neglect, accident, or any other cause beyond the control of Practical Automation, Inc. or to any product whose serial number has been removed, altered, replaced or rendered illegible.

Except and to extent provided herein, Practical Automation, Inc. makes no warranty, either express or implied, including any warranty of merchantability or fitness for a particular purpose.

Practical Automation, Inc. shall not be liable to the purchaser or to any other person or firm for any specified or consequential damages of any kind which result from the use or misuse by any person or loss of profits or product resulting from any defect or malfunction or failure of this product.

No person, agent, distributor, service facility or company is authorized to change, modify or amend the terms of this limited warranty in any manner or fashion whatsoever.

1.1.2 Warranty Procedure

If you cannot resolve your equipment problem, notify Practical Automation, giving the model and serial number of your equipment. Describe your problem in detail.

Upon receipt of this information, Practical Automation will send you service information if the trouble is easily corrected. If the trouble requires factory service, we will so advise and provide written return authorization. Loaner printers can usually (subject to availability) be shipped within 24 hours during the work-week by Practical Automation. Customers are required to pay all shipping charges.

Refer also to the Warranty Terms and Packaging and Shipping instructions before returning any equipment.
1.2 FCC NOTIFICATION

FOR USERS IN THE UNITED STATES

WARNING:

Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designated to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Shielded cables must be used with this unit to insure compliance with the Class A FCC limits.

FOR USERS IN CANADA

This Class [A] digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numerique de la classe [A] respecte toutes les exigences du Reglement sur le material brouilleur du Canada.

1.3 REGULATORY COMPLIANCES

CE Mark: Compliant
Safety: ANSI/UL 60950 3rd ED. CAN/CSA C22.2 NO. 60950-00
 IEC/CENELEC STDS EN 60950: 1999
CB REPORT: IEC 60950 3rd ED.
EMI/EMC: FCC Class A
 EN 55024:1998 and EN 55022 1998 Class A
2 ITX 3000/2000 OVERVIEW

2.1 Introduction.
This instruction manual provides information for the ITX series printers and associated options. It provides installation, operational, configuration programming, systems applications notes and maintenance information.

2.2 Product Description.
The ITX series printers are high-speed ticket printers designed for use in movie-theater and event ticketing applications. They have many features designed to make ticket printing faster and more reliable. The ITX has been optimized to work from character-based operating systems (Dos, Unix, Linux, Etc.), permitting any combination of graphics and fonts to be printed, or, with the optional “G” version firmware and a printer driver, in the Windows operating system environment for fast WYSIWYG printing. Refer to section (2.4.1) for specifying the printer’s firmware option that is desired.

The ITX series has both fixed and adjustable ticket width models available. All models use direct thermal imaging and have been optimized to print on ticket stock with registration marks. The ITX fixed width models print on standard 2.00" (50.8 mm) or 3.25" (82.6 mm) wide ticket stock. ITX adjustable width printers can accommodate ticket widths from 2.00" (30.8mm) to 4.00" (82.6mm). Designed for use in applications where fast printing is required, the ITX has features and options structured to support unattended operation in a kiosk or similar environment. An optional low paper sensor can be mounted with the ticket stock supply to signal the application when the ticket supply needs to be replenished.

The ITX 2000/3000 (203/300 DPI respectively) can be connected to the system using one of the following data interfaces: Parallel IEEE-1284, Serial RS-232 or Full Speed USB 2.0 Interface. The interface cables are standard “off-the-shelf” cables. The ITX delivers extensive status information over these interfaces. This status provides the OEM host system with information such as: Low Paper, Out of Paper, Ticket Count, error conditions, etc. This status information permits the host application to be tightly coupled to the ticket printing process.

An external 24V power module provides the input power for ITX series printers. This single supply 24V operation makes for easier integration into an OEM system power distribution scheme. An additional benefit is a power management scheme that budgets the printer's operation to a modest 60W average power allocation.

The printer and control electronics are mounted in a single chassis. Depending on the printer model it can be mounted into a counter-top (e.g. movie theaters), stand-alone on a desktop, with a locking ticket cabinet for enclosing the ticket stock or in a kiosk mountable configuration. The separate power supply module is connected to the printer through a 6 foot (1.8 meter) shielded cable with a circular DIN connector. This modular packaging scheme is extremely convenient and suitable for mounting into any OEM system.
2.3 Choosing FGL Emulation or Raster Graphics Mode

Depending on the firmware installed, PA ticket printers can operate one of two modes: FGL Emulation or Raster Graphic mode. In general, new Windows applications should use the Raster Graphic mode, which relies on the Windows GDI (Graphic Data Interface) process to create the print information. This provides the most font flexibility and best graphic rendering.

FGL mode relies on the internal printer fonts and barcode generators to create the ticket. FGL uses a wide range of ASCII printer commands to select the fonts and enable the other features. PA also offers an FGL Windows Printer Driver, however, its intended use is primarily for backward compatibility with legacy ETX 2000 applications that were operating with its FGL Windows driver. The FGL Windows driver, when the host application selects and only uses the printer internal fonts can be very efficient and responsive. However, in application circumstances where Windows WYSIWYG printing is the goal, the printer’s FGL firmware and the FGL Windows Driver are a less efficient combination of resources than the “G” firmware and its Windows driver.

Here are some reasons that might direct you to use the FGL Emulation mode:
- 1- When using a command based operating system such as DOS or Unix. (Without the available resources, of a graphical operating system, such as Windows, programmatic creation the printer raster graphical information can be very challenging).
- 2- When using the Serial (RS-232) Interface (only supported by the FGL printer).
- 3- If your Ticketing Application specifies an FGL printer (ex: ETX or ITX). Consult your ticketing software vendor for their recommendation of the printer model to be used.

In most other Windows situations, the Raster Graphic mode is preferred. You should order the ITX printer with the ‘G’ suffix (ex: ITX-2003G). If you have purchased the incorrect model, it is possible to download the correct firmware into the printer.

Refer to section 16 for information regarding the correct printer driver for your application.

2.3.1 Programmer’s Notes:
The choice of which printer mode to use can be based on many factors, as outlined above. However, the fundamental choice for the programmer is the location of the programmer’s drawing surface. For FGL emulation it is within the printer and manipulated using printer commands sent over the interface. For the Raster Graphic mode, the ticket is created using Windows programming methods, and drawn by the Windows GDI process. The printer commands are abstracted from the programmer by the Windows Printer Driver, which sends them directly to the printer. The GDI process treats everything as graphic objects, including fonts. The rendering process yields a large amount of printer data, but the Raster firmware is optimized to process this data very efficiently.

When using PA’s V2.0x Windows Printer Drivers all of the advanced spooler and status features are supported by both modes (FGL or “G”).

2.3.2 Managing Barcodes
One of the best features of FGL printers is the ability to create barcodes, automatically, using ASCII printer commands. The most common use of this is from a command line based OS such as DOS or UNIX. Some FGL-based applications can create FGL barcodes, in a Windows environment, by sending the printer command strings, as text, formatted in a printer font. This process is outside the Windows WYSIWYG process and thus can be difficult for some programmers to integrate with other Windows-based fonts and graphics.

For Raster Graphic printers, several vendors have created DLL utilities that will generate a graphic image of the barcode, which can be placed on the ticket the same way as any other image. This can be advantageous to the programmer who needs the creative flexibility provided by Windows environment. This method also allows designers to include proprietary barcode symbols, which may not be included in the FGL palette.

For example, this vendor provides the Windows tools needed to create 2-D barcodes (PDF-417):
http://www.bizfonts.com/pdf417/
Other vendors provide similar tools for a variety of barcodes.

2.3.3
Detailed Printer Data

The following is a brief explanation of the process by which the FGL or “G” printer forms the printed image of a character.

In order to print a simple line of text, each the letter’s graphic image (its pixels) need to be converted into printer dots.

For FGL printer, which has 13 internal fonts, one of these fonts is selected by a command, followed by the test for the letters to be printed, using that font. For example, to print the word “Text”, in FGL, you would send “<F1>Text”. The printer has an internally stored image of the dot patterns, for each printer font, and it uses this to print the selected font.

For Raster Graphics, the font selection is made using Windows programming methods. For example, a small Arial font could be selected for the printable string of “Text” (as in the example above). The Windows GDI, using the Windows Printer Driver, would then render this character string (convert the each letter’s graphic image, its pixels, into printer dot image data, and commands). This data would be passed, to the printer, over the interface. The image below shows the graphical data.

<table>
<thead>
<tr>
<th>Dots:</th>
<th>Data (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*****</td>
<td>F8 00 08</td>
</tr>
<tr>
<td>*</td>
<td>20 00 08</td>
</tr>
<tr>
<td>*</td>
<td>20 C8 9E</td>
</tr>
<tr>
<td>*</td>
<td>21 25 08</td>
</tr>
<tr>
<td>*</td>
<td>23 E2 08</td>
</tr>
<tr>
<td>*</td>
<td>21 05 08</td>
</tr>
<tr>
<td>*</td>
<td>20 C8 86</td>
</tr>
</tbody>
</table>

Thus “Text” is converted to 7 rows of 3 bytes each. In addition, the Raster language requires a command prefix of at least 2 characters, so each line is at least 5 bytes. This results in 35 bytes from the Raster Graphic driver, whereas only 8 data bytes are required with FGL. For larger fonts, the difference can be 100:1, or more.

The Windows Raster programming method allows the use of any Windows font or graphic without special commands. To support this larger data payload the “G” version printer has its electronic hardware, firmware and driver organized to handle this very efficiently. Both modes have similar throughput. Note also that its is possible to change the operating mode of the printer by simply downloading the preferred firmware to the printer.
2.4 MODEL NUMBERING SYSTEM

2.4.1 ITX Printer Model Numbers:

<table>
<thead>
<tr>
<th>ITX</th>
<th>e</th>
<th>MN</th>
<th>DD</th>
<th>TW</th>
<th>FW</th>
<th>TS</th>
<th>CN</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>Enclosure:</td>
<td>u = Desktop (19.2.1 and 19.2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = Countertop mountable (19.2.3, 19.2.4 and 19.2.5) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>k = Kiosk mountable (19.2.6, 19.2.8 and 19.2.9) (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e = Desktop with locking ticket cabinet (19.2.10) (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>s = Special Configuration (Custom Ordered)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN</td>
<td>Model Number:</td>
<td>ITX = Printer Series Model Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>Dot Density:</td>
<td>300 = 300 DPI Print resolution (11.8 Dots/mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 = 203 DPI Print Resolution (8.0 Dots/mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>Ticket Width:</td>
<td>2 = 2.00" (50.8 mm) Ticket width (9.1.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = 3.25" (82.6 mm) Ticket width (9.1.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3A = 2.00"- 3.25" (50.8 – 82.6 mm) Adjustable width (9.1.4) (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4A = 2.00"- 4.00" (50.8 – 101.6 mm) Adjustable width (9.1.4) (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4AS = 2.00"- 4.00" (50.8 – 101.6 mm) Adjustable width (9.1.4) (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x = x.xx" Custom Ticket Paper widths (Custom Ordered)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>Firmware:</td>
<td>(blank) = Standard Firmware “emulates” Boca’s FGL Ticket Programming Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G = “G” Firmware for Windows® WYSIWYG function and GTX2000/3000 emulation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Ticket Separation:</td>
<td>C = Cutter (pITX = w/Ticket Stacker ; u/e/k ITX = w/Ticket Ejector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T = Tearbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>Configuration Number:</td>
<td>(blank) = Note: This entry is normally blank.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For a specially ordered printer configuration the “s” prefix will be used (sITX 3003) with a three digit configuration number.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Data Interface: (6)</td>
<td>Parallel = IEEE-1284 Parallel Interface (7.1.4, 7.1.5 and 19.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial = Serial RS232 Interface (7.2.1 and 7.2.3) (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USB = USB 2.0 Full Speed Interface (See 7.3 and 7.3.1) (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The pITX adjustable models (3A, 4A, 4AS) are only available in the tearbar versions.
2. The kITX models are not available in tearbar versions, at this time.
3. eITX is not available, at this time, in the adjustable 4.00” models (4A, 4AS).
4. The registration mark sensor is on the non-adjustable side of the printer (the right hand side, viewed from the front).
5. The registration mark sensor is on the adjustable side of the printer (the left hand side, viewed from the front).
6. The Interface name: Parallel, Serial or USB is stamped into the I/O Interface bracket and becomes the final suffix of the product’s model number label.
7. The Serial RS232 Interface is only supported with FGL firmware.
8. The USB Interface is supported by “G” and FGL firmware. For, the “FGL”, however, it is only after firmware version V1.19 (or later) is installed on the FGL printer. Both the “G” and FGL require their respective V2.xx Windows Printer Driver to be installed on the host computer for USB support to be functional.
2.4.2 ITX Power Supply Model Number

<table>
<thead>
<tr>
<th>MN</th>
<th>LC</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS60-14</td>
<td>Power Supply Model Number (60W External Desktop Power Supply) (19.2.13)</td>
<td></td>
</tr>
</tbody>
</table>

LC = Line Cord:

- (blank) = with US approved line cord
- E = no line cord for Export applications

2.4.3 Example of an ITX 2000 and 3000 Printer Model Number

pITX 3003-C-Parallel with PS60-14

The above two model numbers specify a complete ITX 3003 printer configured with:

- Countertop mount
- a 3.25” paper width
- a cutter with Ticket Stacker (pITX)
- a parallel data interface
- 60 watt external desktop power supply with a line cord for the North American market

2.4.4 ITX Power Supply Options

The ITX printer system should be ordered with the PS60-14 External 24V Desktop Power Supply. It can be optionally purchased without a power supply. The customer must provide an equivalent power supply (13.3).
2.4.5 ITX Separate Component Model Numbers

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY</td>
<td></td>
</tr>
<tr>
<td>PS60-14</td>
<td>Universal input (90-240 VAC, 47-63 Hz) External 24VDC 60W Desktop Power Supply supplied with US 115V line cord (19.2.13).</td>
</tr>
<tr>
<td>PS60-14E</td>
<td>Universal input (90-240 VAC, 47-63 Hz) External 24VDC 60W Desktop Power Supply supplied without a US 115V line cord.</td>
</tr>
<tr>
<td>PS60-H</td>
<td>Mounting bracket for the PS60-14 power supply (19.2.14)</td>
</tr>
<tr>
<td>TICKET HOLDERS</td>
<td></td>
</tr>
<tr>
<td>GTX-THLP-2</td>
<td>Fan fold ticket holder (8.2.3 and 19.2.20) for ticket stock up to 2.50" (63.5 mm) in width and 6.25" (158.8 mm) in length. Includes a low paper sensor and a 6' auxiliary cable (ATX-AC8).</td>
</tr>
<tr>
<td>GTX-THLP-4</td>
<td>Fan fold ticket holder (8.2.3 and 19.2.20) for ticket stock up to 4.50" (114.3 mm) in width and 6.25" (158.8 mm) in length. Includes a low paper sensor and a 6' auxiliary cable (ATX-AC8).</td>
</tr>
<tr>
<td>TICKET OUTPUT BASKETS</td>
<td></td>
</tr>
<tr>
<td>TB-B23</td>
<td>Ticket basket for collecting 2 or 3.25 inch wide tickets that have been printed and cut. This basket is used on FIXED WIDTH eITX and uITX cutter/ejector models. A basket is included with all printer models that require one. (See Section 19.2.18)</td>
</tr>
<tr>
<td>TB-B4A</td>
<td>Ticket basket for collecting 2 to 4 inch wide tickets that have been printed and cut. This basket is used on ADJUSTABLE (A and AS) eITX and uITX cutter/ejector models. A basket is included with all printer models that require one. (See Section 19.2.18)</td>
</tr>
<tr>
<td>CABLES</td>
<td></td>
</tr>
<tr>
<td>ATX-AC8</td>
<td>Auxiliary Cable, shielded, 8 conductors, with MINIDIN-8 connector, 6 foot (1.8m) length</td>
</tr>
<tr>
<td>AC8-18</td>
<td>Auxiliary Cable, shielded, 8 conductors, with MINIDIN-8 connector, 18" (0.45m) length.</td>
</tr>
<tr>
<td>ATX-PC36</td>
<td>Parallel IEEE-1284 A-B Interface Cable, 6 foot (1.8m) length.</td>
</tr>
<tr>
<td>ITX-SC09</td>
<td>Serial Interface Cable, DB9M/DB9F, 10 foot (3.0m) length.</td>
</tr>
<tr>
<td>CUSB-206</td>
<td>USB 2.0 A-B Cable, 6 foot (1.8m) length.</td>
</tr>
<tr>
<td>COUNTERTOP ADAPTER PLATE FOR pITX</td>
<td></td>
</tr>
<tr>
<td>ITX-APETX0</td>
<td>pETX to pITX adapter plate (See section 19.2.19) 2.00 and 3.25” only.</td>
</tr>
<tr>
<td>DATA INTERFACE MODULES</td>
<td></td>
</tr>
<tr>
<td>IM-P</td>
<td>Parallel IEEE 1284 Data Interface Module (See section 7.1.4)</td>
</tr>
<tr>
<td>IM-S</td>
<td>Serial RS-232 Data Interface Module (See section 7.2.1)</td>
</tr>
<tr>
<td>IM-U</td>
<td>USB 2.0 Data Interface Module (See section 7.3)</td>
</tr>
<tr>
<td>k ITX MOUNTING PLATES and MOUNTING RAILS</td>
<td></td>
</tr>
<tr>
<td>MP-2</td>
<td>2.00 and 3.25 Mounting Plate (See section 19.2.15)</td>
</tr>
<tr>
<td>MP-4</td>
<td>4.00 Mounting Plate (See section 19.2.16)</td>
</tr>
<tr>
<td>MR-2x</td>
<td>Mounting Rails (See section 19.2.17) sold in pairs.</td>
</tr>
</tbody>
</table>
3 PREPARATION FOR USE

3.1 Unpacking and Inspection
-a- Inspect the shipping container for any signs of damage. If any damage is noted, contact freight carrier and file a claim with them.
-b- Carefully unpack the printer system.
-c- Inspect the printer system carefully.
-d- Check the received items to the packing list. If any discrepancies are noted, contact our Customer Service Department.
-e- Save the packing material for reuse in shipment of the printer system.
-f- Note the Printhead Lever is shipped in the up position to reduce wear on the roller. Put the lever down prior to operating the Printer.

3.2 Installation Location
The uITX is designed to be used on a desktop, with the ticket stock entering at the rear of the printer. Take care not to tangle the cables with the ticket stock. The eITX also sits on the desktop, with the tickets stored inside the lockable chassis. The pITX is designed to mount in a counter top, with the ticket stock placed below the printer. Take care to dress the cables away from the ticket stock. Refer to section 19.2 for the appropriate dimensional drawings. As with all electronic equipment, the ITX printer should be installed in a clean and ventilated location, free of excess dust and/or heat.

3.3 Power Connection
Refer to section 4.1 for a drawing of the printer's rear panel.
-a- Insure that the power switch on the rear panel of the printer is in the off position.
-b- Connect the DC power output cable from the power supply to the power input connector on the rear panel of the printer.
-c- Connect the AC line cord to the IEC entrance connector on the power supply.
-d- Connect the AC line cord to the wall power outlet.

3.4 Data I/O Interface Connection
The ITX printer requires a shielded data cable to connect to the host computer. Refer to section 4.1 for a drawing of the printer's rear panel.

3.4.1 Data I/O Interface Connection – Parallel IEEE-1284
The ITX printer requires a shielded IEEE-1284 A-B parallel cable to connect to the host computer. Refer to section 4.1.1 for a drawing of the printer's rear panel.
-a- Connect the 36 pin connector end of the cable to the parallel input cable on the rear of the printer.
-b- Connect the 25 pin connector end of the cable to the parallel output port of the PC.

3.4.2 Data I/O Interface Connection – Serial RS232
The ITX printer requires a shielded RS-232 Serial cable to connect to the host computer. Refer to section 4.1.1 for a drawing of the printer's rear panel.
-a- Before plugging in the cable, make sure dip switches are set to your needed configuration. Refer to section 7.2.2 for list of switch settings and drawing showing actual switches. Note that 3-wire cables (sometimes called null-modem) must use XON/XOFF flow control.
-b- Connect the 9 pin male connector end of the cable to the serial input cable on the rear of the printer.
-c- Connect the 9 pin female connector end of the cable to the serial output port of the PC.

3.4.3 Data I/O Interface Connection – USB 2.0 Full Speed
The ITX printer requires a 4 pin, shielded, USB A/B 2.0 Certified Compliant Cable to connect to a USB Compatible Computer. Refer to section 4.1.1 for a drawing of the printer's rear panel.
-a- Connect the 4 pin connector end of the cable to the USB input cable on the rear of the printer.
-b- Connect the 4 pin connector end of the cable to the USB output port of the PC.
3.5 Adjustable Width Ticket Printers – Models with “A” and “AS” Suffixes.

The adjustable width ticket printers have a detailed ticket width adjustment guide, posted on the Practical Automation WEB site in the “Down Load Drivers and Files” area, in the ITX 2000/3000 area, under the “Technical Notes” sub-section.

http://www.practicalautomation.com/download.html

These ticket width adjustment step by step procedures include photos. These adjustment guides are to be used as the reference for this adjustment procedure.

3.6 Ticket Stock Supply

The ITX has been optimized for registration marked ticket stock (0.0075” caliper). For the desktop models (uITX), the ticket stock should be placed behind the printer enclosure. For the counter top models (pITX), the ticket stock should be placed below the printer. For all ticket stock supplies the thermally active side of the ticket stock needs to be facing up. Registration marks must be on the opposite side from the printing side. The ticket stock must be positioned to provide a smooth, well-aligned path to the printer's entry guides. Refer to section 9.1 for information pertaining to the ticket stock supply.

3.7 Ticket Stock Loading

The printer will automatically load the ticket stock onto the drive roller of the printer. For auto-loading, the printhead lever, located on front left side of the printer mechanism, must be closed (in the fully downward position). After applying power to the printer a long beep will be sounded indicating the printer is ready to accept ticket stock. Feed the ticket stock into the rear paper guide until the ticket stock is stopped by the print mechanism. After a short time, the ticket stock will be pulled into the loaded position.

3.8 Auto-Sizing

After every power on, the printer will calibrate the registration mark sensors and measure the length of the tickets. If the printer runs out of tickets and new ticket stock is loaded without cycling the power, this auto-sizing will also be done again.

3.9 Test Print

Once the ticket stock has been loaded successfully a test ticket should be printed to insure that everything is operating properly. Pressing the SELECT/F0 switch will place the printer offline; the READY LED will go out. Then by pressing the TEST/F1 switch a test ticket will be printed. Refer to section 4.5 for detailed information on these switch operations.

3.10 Printer Set-up Confirmation

It is recommended that the System Status Report be printed immediately after installation (power up while pressing F0). Review the settings and confirm that they match the needs of the application. Refer to section 5.1.

3.10.1 Configuration Settings

The printer is configured at the factory to support the installed options: printer width, form type, and paper cutter. To verify these settings, refer to section 5.1.

3.10.2 EEPROM Settings

If any settings on the Systems Status Report are not set in accordance with the intended operation of the printer, (Refer to section 10.1) and follow the procedure to change these settings in the EEPROM.

3.10.3 Configuring the Printer’s Data Interface:

Host PC: The appropriate set-up for the PC’s Interface: Parallel, Serial or USB should be done, as required, using the information provided by the PC’s User’s Information.

Printer: For the Parallel or USB interfaces there are no printer set-up selections required. The Serial Interface requires that selections be made for Baud Rate, Flow Control, etc. Note: that these printer selections need to match the setup on the host PC. Refer to section 7.2.2 for Serial Interface settings.

3.10.4
Print Speed Selection

The factory default Print Speed is 6 IPS (300 DPI) or 8 IPS (203 DPI). This setting will work well with most good quality ticket stock. If faster print speeds are required you will need to obtain a faster thermally responsive ticket stock (see section 9.1.2) and change the Print Energy Table from "Normal" to "Alternate" to increase the print speed. This setting will allow you to print at 8 IPS (300 DPI) or 10 IPS (203 DPI). Refer to the EEPROM selection method in Section 4.5.2.7. The selected Energy Level, Energy Table, and the resulting maximum Print Speed will be displayed on the printer’s F0 printer status report ticket print-out.

3.10.5 Is a Printer Driver Required?

If you are using the ‘G’ firmware, you must install the Windows driver.
If you are using the FGL firmware, you may or may not need a driver, depending on your application and operating system. Refer to section 2.3 for a summary of the advantages of each configuration. Refer to section 2.4.1 to determine the proper model numbers. Go to the website to obtain the correct driver, if required, as indicated by this table: 16.

Practical Automation WEB site: http://www.practicalautomation.com/download.html
4 OPERATOR CONTROLS and INDICATORS

4.1 Rear I/O Panel
The following items are located on the rear panel: the power switch, power input connector, auxiliary I/O cable connector and the installed data interface connector module (Parallel shown). The power switch in combination with holding one or more of the switch and display panel switches provides entry into special set-up menus or diagnostic programs. The Aux I/O socket is for connecting a low-paper sensor from an external ticket stock supply.

4.1.1 Data Interface Module Details

Shown below are the 3 interface modules available for the ITX printers. Note: The RS232 Serial is NOT supported on the “G” firmware printers. It is only for FGL firmware printers.
4.2 Switch and Display Panel

The switch and display panel provides the operator with an interface to the printer. The display LEDs and beeper are used to output relevant printer operational status and warnings. The switches provide a means to control the various printed output menus and test functions.

4.3 Panel LED Indicators

4.3.1 Power/Paper

This green LED indicator provides the following printer status information:
-1- Sanity indication/Normal display = very short OFF blink approx. every 14 sec.
-2- Presence of DC power = ON or Flashing when power is on.
-3- Out of Paper = rapid ON/OFF 50% duty cycle flashing when out of paper.
-4- Low Paper = slow ON/OFF 50% duty cycle flashing when paper is low.
-5- Diagnostic testing modes = 10% ON and 90% OFF when in diagnostic mode.

4.3.2 Ready

This green LED indicator provides the following printer status information:
-1- System readiness for operation = ON system is ready to accept data; OFF not ready.
-2- Data flow = During the receipt of data, the LED will blink, following the state of the Busy signal.
-3- Reverse channel status = While not printing, during an IEEE-1284, or USB, reverse channel status acquisition event, this LED will blink, following the state of the Busy signal.

4.3.3 Attn/Err

This amber LED indicator, in combination with the beeper, is a general-purpose enunciator for the operator. It provides the following printer status information:
-1- Switch press annunciation = short flash/beep for each switch pressed
-2- System warnings = an attention flash/beep to alert the operator to load paper, etc.
-3- System error codes = a repeating sequential series of coded flash/beep signals.
-4- Normal display = OFF
4.4 Panel Switches

There are four momentary push button switches on the user panel. These are used for a variety of manual interactions with the printer. Some of these are printing a test ticket, entering data into the printer parameter memory (EEPROM), and selecting miscellaneous diagnostic operations.

The switches are labeled:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Operation/Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT/F0</td>
<td>On/Off line Select / Function 0</td>
<td>Offline enables functions below.</td>
</tr>
<tr>
<td>TEST/F1</td>
<td>Test print / Function 1</td>
<td>Prints a graphical test ticket.</td>
</tr>
<tr>
<td>LINE FEED/F2</td>
<td>Line feed / Function 2</td>
<td>Simple paper movement.</td>
</tr>
<tr>
<td>FORM FEED/F3</td>
<td>Form feed / Function 3</td>
<td>Length depends on the printer setup and form type.</td>
</tr>
</tbody>
</table>

4.5 Panel Switch Operations

The switch and display panel switches are used for two modes of operation. These are offline and power-on operations.

4.5.1 Offline Operations

When the printer is operating normally, and on-line, pressing the [SELECT/F0] switch manually takes the printer to an offline state. NOTE: As a reminder to the operator the A/E LED and buzzer will produce a single flash/beep approximately every 14 seconds. When the system is offline the switches operate in accordance with the Offline Switch Operations Table shown below.

4.5.1.1 Offline Switch Operations Table

<table>
<thead>
<tr>
<th>Switch</th>
<th>Operation/Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT/F0</td>
<td>Offline / Online toggle</td>
<td>Offline enables functions below.</td>
</tr>
<tr>
<td>TEST/F1</td>
<td>Prints a test ticket.</td>
<td>Prints a graphical test ticket.</td>
</tr>
<tr>
<td>LINE FEED/F2</td>
<td>Advance approximately 0.1"</td>
<td>Simple paper movement.</td>
</tr>
<tr>
<td>FORM FEED/F3</td>
<td>Advances one form length.</td>
<td>Length depends on the printer setup and form type.</td>
</tr>
<tr>
<td>F0 and F1</td>
<td>Force a Cut</td>
<td>Only when a cutter is installed. The switches must be released together.</td>
</tr>
</tbody>
</table>

4.5.2 Power-On Operations

These functions provide an additional level of diagnostic support tools. These functions are provided for service or technical support personnel.

4.5.2.1 Power-On Operations Table

For this mode, one or more switches are pressed, and held, while applying power to the printer. The switch is held until a flash/beep occurs. The lists of power-on operations are detailed below. Refer to section 4.5.2.4 for System Information Help Report, which outlines each menu, listed below.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Operation/Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT/F0</td>
<td>Print status report.</td>
<td>If held longer, prints help menus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Refer to section 4.5.2.4 "System Info Help Report").</td>
</tr>
<tr>
<td>TEST/F1</td>
<td>Enter diagnostics menu</td>
<td>Refer to section 12.1</td>
</tr>
<tr>
<td>LINE FEED/F2</td>
<td>Not Used</td>
<td>Possible future feature</td>
</tr>
<tr>
<td>FORM FEED/F3</td>
<td>Enter EEPROM change menu</td>
<td>Refer to section 10.2</td>
</tr>
<tr>
<td>F0 and F1</td>
<td>Re-program Flash Memory.</td>
<td>Refer to section 14.3</td>
</tr>
<tr>
<td>F0 and F2</td>
<td>Printhead cleaning.</td>
<td>Refer to section 4.5.2.10</td>
</tr>
<tr>
<td>F2 and F3</td>
<td>Hex Dump Diagnostic Mode</td>
<td>Refer to section 12.3</td>
</tr>
</tbody>
</table>

4.5.2.2 Printer System Information and Reports

Printer system status information is available through a number of printed reports. These are the System Status Report, System Help Report, EEPROM Interactive Parameter Change Menu, and Diagnostic Support Menus.
4.5.2.3 System Status Report

This is a printed report, which contains much of the operational or stored parameter information for the system. It includes: firmware version numbers, diagnostic pass/fail results, interface configuration status, print intensity control levels, miscellaneous system control parameters and operational data. This report is printed by continuously holding the [F0] switch while turning on the power and releasing the switch after the first beep. Note: The System status report below is from an FGL firmware printer. The “G” firmware printer provides this same report, however, a few details are different.

```
* SYSTEM STATUS REPORT *
```

```
Practical Automation
ITX Ticket Printer

Model: ITX-2003
Firmware Version: V1.03
Revision Date: (05/30/01)
Resolution DPI: 203

ALL SYSTEM TESTS PASSED

CONFIGURATION:
Output Type: CUTTER
Data Interface: PARALLEL
ACK Signal: NO ACK
Two Image Rams
Max Image Rows : 640
Max Image Columns : 6400

EEPROM SETTINGS
* Settings can be changed
Print Energy Settings
  * Intensity: 6
  * Energy Tables: Alternate
  Print Speed: 10.00 IPS

Paper Settings
  * Low Paper Mode = STATUS Only
  * Form Type Ctrl = SET BY CONFIG
  * Form Length Ctrl = AUTO WITH BU
  Form Type = REG MARK
  Measured Size = 5.56
  * Backup Control = Enabled
  * Beep = ON
  * Status Selector = SHORT
  * Purge Spooler = DISABLED
  * Cutter Mode = ENABLED

Row Offset: 16
Col Offset: 16

Practical Automation
ITX Ticket Printer

Hold F0 to print Help Menus

Operating Status:
PHTEMP  24C
EXSEN1  1.15
EXSEN2  0.49
LOWPAPERSEN  0.00
PHVOLTAGE  23.94
SYSVOLTAGE  23.82
CUTSEN  4.36
LOADSEN  4.75
SYSCS  3.34
PHCS  2.50
INTDETS  4.02

Sensor Calibration
  Load Cut
White = 973, 973
Thresh = 560, 540
Black = 148, 108

INTERNAL STATUS
  Build : 073
  = 0000 AB5, 0008 0A21, 0000 0086, 0000 0004, 0000 104A
  > 32, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
  A2D Detect = 8
  AutoDetect PH Words: 40
  User Flash = 130816
  Checksum: 1830
  Boot sum: E07F
```
4.5.2.4 System Information Help Report

The report above has a second part. If the [F0] switch is held after the first part has completed printing, the system information help report will also be printed. This report is a collection of menus (which are printed during the associated operating modes) and general help for other printer information such as error codes, etc.

* OFFLINE SW. HELP *

F0/SEL = ON/OFFLINE Toggle
F1/TST = Print TEST ticket
F2/LF = Line FEED Paper
F3/FF = FORM FEED Paper
F0 & F1 = CUT PAPER
NOTE: A warning BEEP/FLASH will occur every 15 sec when in the off-line condition.

* POR SWITCH HELP *

Apply power to unit while holding:
F0 = SYSTEM STATUS
F1 = DIAGNOSTICS
F2 = NOT USED
F3 = EEPROM MENU
F0 & F1 = RE-PROGRAM FLASH MEMORY
F0 & F2 = PRINthead CLEANING
 (F0/F1=Fwd; F2/F3=Rev)
F2 & F3 = HEX DUMP MODE

* EEPROM ENTRY HELP *

Turn off power to printer.
Hold F3 while turning on power.
Hold F3 until 1st beep.
Release F3, wait for second beep.
Press F3 twice quickly, hold press until printing starts.
4.5.2.5 System Information Help Report - continued

* ERRORS HELP *

Long flash/beep = 1
Short flash/beep = 0
Repeated binary beep/flash
sequence (1,2,4,8 etc)
Error Codes:
5 Flash/Beeps
 1 = MPU/SYS
 2 = RAM
 3 = EEPROM
 4 = FLASH
 5 = CHAR GEN
 6 = IMAGE RAM
 7 = A2D
 8 = FPGA/ASIC
 9 = VOLTAGE
 10 = PH THERMISTOR
 11 = PH DATA
 12 = PH RESISTOR
 13 = CUTTER INITIALIZATION
 14 = CONFIGURATION
 15 = MISC
4 Flash/Beeps
 1 = PAPER
 2 = CUTTER
 3 = TRANSPORT
 4 = OUTPUT
 5 = REGISTRATION
 6 = HEAD LEVER OPEN
 7 = OUT OF PAPER
3 Flashes (no beeps)
 1 = TICKET NOT TAKEN (no beep)
 2 = TICKET NOT PRESENTED (no beep)

4.5.2.6 Diagnostic Menu
These functions are used by the factory during the manufacture or servicing of the printer. This menu is entered by continuously holding the [F1] switch while turning on the power. (Refer to section 12.2 for Diagnostic Sub-Menu).

4.5.2.7 EEPROM Change Menu
This menu is used to provide a method for modifying the stored printer operating parameters, that are saved in nonvolatile EEPROM memory. Holding the [F3] switch while turning on the power enters this menu (to protect against an inadvertent changing of stored parameter data, a special sequence using [F3] is needed following the initial [F3] entry). Refer to the "EEPROM ENTRY HELP MENU" portion of the system help report displayed in section 4.5.2.4 for this switch sequence. The EEPROM change menu, once entered, has instructions for changing stored values. The EEPROM parameter change menu has two levels (an additional F3 switch press accesses the next level). Note: Some of the parameters cannot be changed. They are reserved for future firmware updates. Refer to section 10 for additional information on the EEPROM stored parameter data.

4.5.2.8 Re-Program Flash Memory
This function permits the operator to change the operational firmware of the printer. This operation is NOT a normal operator function. Technical personnel responsible for the programming or maintenance of the printer system should only use it. This mode is entered by continuously holding the [F0 and F1] switches while turning on the power. Refer to section 14.3 for additional information.

4.5.2.9 Hex Dump Diagnostic Mode
This function provides a method for determining if the data is being sent over the data interface properly. Technical personnel responsible for the programming or maintenance of the printer system generally use it. This mode is entered by continuously holding the [F2 and F3] switches while turning on the power. Refer to section 12.3 for additional information.

4.5.2.10 Printhead Cleaning Diagnostic Mode
This function provides a method for using the paper advance motor to drive a cleaning card under the printhead, as part of normal printer maintenance. This mode is entered by continuously holding the [F0 and F2] switches, while turning on the power. Refer to section 12.4.2.
5 PRINTER PROGRAMMABLE CONFIGURATION SETTINGS

5.1 Overview
The ITX printer has programmable or configuration features permitting it to be customized to almost any printing task. These have been configured, at the factory, to the most typical settings. Review this section to determine if any selections should be changed to match the specific application.

5.1.1 Factory Settings

5.1.1.1 Cutter/Tearbar
A jumper on the cutter connector’s cable assembly is installed to reflect the presence, of a cutter. Removing the cutter’s connector without installing a tearbar ticket separation edge is not recommended.

5.1.1.2 Registration Marked Stock
All ITX printers are configured for registration marked ticket stock. Contact the factory if unmarked ticket stock is required for the target application.

5.1.2 Special Customization
Special customizations to the printer firmware, EEPROM settings, mechanical options, etc. can be accommodated, for customers with special application needs. Please contact the factory’s customer technical support.

5.1.3 EEPROM Parameter Storage Memory
This memory device holds the parameters that customize the printer’s operation to specific application requirements. Refer to section 10.2 for details making changes to the data stored in this device.

5.1.3.1 EEPROM Factory Defaults
The EEPROM is typically shipped with the following default settings. These setting handle most printer applications.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Setting</th>
<th>Section Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Intensity:</td>
<td>6</td>
<td>10.3.1.1</td>
</tr>
<tr>
<td>Print Energy Table:</td>
<td>Normal</td>
<td>10.3.1.4</td>
</tr>
<tr>
<td>Warm Time Adjust</td>
<td>Normal</td>
<td>10.3.1.5</td>
</tr>
<tr>
<td>Beeper:</td>
<td>ON</td>
<td>10.3.1.8</td>
</tr>
<tr>
<td>Low Paper:</td>
<td>STATUS Only</td>
<td>8.2; 10.3.1.8</td>
</tr>
<tr>
<td>LP Cable Detect:</td>
<td>Passive</td>
<td>10.5.2</td>
</tr>
<tr>
<td>Form Stored Size:</td>
<td>6.00</td>
<td>9.4.1.2.2; 10.4.1.2</td>
</tr>
<tr>
<td>Form Mode</td>
<td>AUTO WITH BACKUP</td>
<td>10.4.1.3; 9.4.1.2</td>
</tr>
<tr>
<td>Status Pointer:</td>
<td>SHORT</td>
<td>10.4.1.4</td>
</tr>
<tr>
<td>Purge Spooler:</td>
<td>ENABLED</td>
<td>10.4.1.6</td>
</tr>
<tr>
<td>Cutter Mode</td>
<td>ENABLED</td>
<td>10.3.1.7</td>
</tr>
</tbody>
</table>
6 PRINTER STATUS INFORMATION

6.1 ITX Printer Status Overview
The ITX printer has a wide range of printer status information available to suit any application environment. There are three types of status: Operator Indicators, Port Level Interface Status, and Interface Reverse Channel Status. Depending on the requirements of the application, the Operator Status, in combination with the Port Level Interface Status, may be all that is required. For more advanced applications Interface Reverse Channel Status can be used to communicate detailed information about the printer back to the host. Refer to the ITX Programmer’s Guide for the command level details on Reverse Channel Status. Also, refer to 6.4

6.2 Operator Status
Operator status is that which is displayed on the printer's display panel LEDs (refer to section 4.2). To summarize, the yellow Attention/Error LED will flash to indicate an error condition (refer to section 4.3.3). The green Ready LED will be on when the printer is ready to receive data from the host. When this LED is off, the printer may be busy printing or it may be in a Diagnostic Mode. The green Power/Paper LED will blink once every 15 seconds under normal conditions. If the printer is out of paper, this LED will blink rapidly. If the Low-Paper sensor is connected and enabled (see section 4.3.1), the Power/Paper LED will blink slowly.

6.3 Port Level Interface Status
The communications port has a status port word that provides overview status information. For the parallel interface this is called the Compatibility Mode Status (commonly known as Centronics status). The parallel interface has several signals, which provide a top-level view of the printer’s status. These are Busy; PError; Select; nFault. Collectively, they convey if the printer is ready for data, has ticket stock and does not have a detected fault. In many applications this level of status is sufficient.

6.4 Reverse Channel Status - Printer Status Programmer’s Information for Windows
A program that demonstrates the detailed printer status collection, in the Windows environment, is available to Practical Automation's customers. Also, a support Utility DLL is available that provides the programmer with tools related to this and other printer related tasks is available. This level of programming tools and technical assistance can only be made available to volume OEM customers. To have access to this support contact your sales representative or Practical Automation’s Sales Manager to explain you application and printer purchasing requirements. Other operating systems will work differently. For more information about the status commands and the printer’s available status information refer to the ITX Programmers Manual.
7 DATA INTERFACE AND AUXILIARY I/O

7.1 IEEE-1284 Parallel Interface Cable
The IEEE-1284 parallel interface is one of the optional interfaces for the ITX printer. Connection of this interface, to a standard PC, is made with a commercially available, “off-the-shelf”, shielded, IEEE-1284 Certified Compliant A-B Printer Cable. The maximum length of this cable is 10 feet (3m).

7.1.1 Parallel Port Signaling
The parallel printer data is sent, in the forward channel, using IEEE-1284 Compatibility mode or ECP signaling. Reverse channel communications are by IEEE-1284 Nibble or ECP mode signaling. If required, refer to the published IEEE-1284 standard for complete information on this interface.

7.1.2 Parallel Interface Cable Schematic
Refer to appendix 19.1.

7.1.3 Parallel Interface Cable Quality
To maintain system EMI/EMC compliance and signal data integrity a shielded cable must be used. A standard IEEE 1284 A-B cable meets these necessary shielding and signal quality requirements.

7.1.4 Parallel Interface Card Assembly
Parallel Interface Pin-out Table

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Signal Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NStr/HostClk</td>
<td>Compatibility Mode: Set active low to transfer data into the input latch of the peripheral. Data is valid while nStrobe is low. Nibble Mode: Set high during transfers to avoid latching data into the peripheral.</td>
<td>Host</td>
</tr>
<tr>
<td>2</td>
<td>Data 1</td>
<td>DATA 1 - LSB</td>
<td>Host</td>
</tr>
<tr>
<td>3</td>
<td>Data 2</td>
<td>DATA 2</td>
<td>Host</td>
</tr>
<tr>
<td>4</td>
<td>Data 3</td>
<td>DATA 3</td>
<td>Host</td>
</tr>
<tr>
<td>5</td>
<td>Data 4</td>
<td>DATA 4</td>
<td>Host</td>
</tr>
<tr>
<td>6</td>
<td>Data 5</td>
<td>DATA 5</td>
<td>Host</td>
</tr>
<tr>
<td>7</td>
<td>Data 6</td>
<td>DATA 6</td>
<td>Host</td>
</tr>
<tr>
<td>8</td>
<td>Data 7</td>
<td>DATA 7</td>
<td>Host</td>
</tr>
<tr>
<td>9</td>
<td>Data 8</td>
<td>DATA 8 - MSB</td>
<td>Host</td>
</tr>
<tr>
<td>10</td>
<td>nAck/PtrClk</td>
<td>Compatibility Mode: Pulsed low by the peripheral to acknowledge transfer of a data byte from the host. Nibble Mode: Used to qualify data being sent to the host.</td>
<td>Printer</td>
</tr>
<tr>
<td>11</td>
<td>Busy/PtrBusy</td>
<td>Compatibility Mode: Driven high to indicate that the peripheral is not ready to receive data. Nibble Mode: Data bit 3 then 7, then forward channel busy status.:</td>
<td>Printer</td>
</tr>
<tr>
<td>12</td>
<td>PError/AckDataReq</td>
<td>Compatibility Mode: Driven high to indicate that the peripheral has encountered an error in its paper path. Peripherals shall set nFault low when-ever they set PError high. Nibble Mode: Data bit 2 then 6.</td>
<td>Printer</td>
</tr>
<tr>
<td>13</td>
<td>Select/Xflag</td>
<td>Compatibility Mode: Set high to indicate that the peripheral is on-line. Nibble Mode: Data bit 1 then 5.</td>
<td>Printer</td>
</tr>
<tr>
<td>14</td>
<td>nAutoFd/HostBusy</td>
<td>Compatibility Mode: Set low by host to put some printers into auto-line feed mode. May also be used as a ninth data, parity, or command/data control bit. Nibble Mode: Set low to indicate that the host can receive peripheral-to-host data, then set high to acknowledge receipt of that nibble.</td>
<td>Host</td>
</tr>
<tr>
<td>15</td>
<td>Not defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Logic Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Chassis Gnd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Peripheral Logic High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Signal Gnd (nStrobe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-27</td>
<td>Signal Gnd (Data 1-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Signal Gnd (PError, Select, nAck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Signal Gnd (Busy, nFault)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Signal Gnd (nAutoFd, nSelectIn, nInit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>nInit/nInit</td>
<td>Compatibility Mode: Pulsed low in conjunction with IEEE 1284 Active low to reset the interface and force a return to Compatibility Mode idle phase. Nibble Mode: Set high.</td>
<td>Host</td>
</tr>
<tr>
<td>32</td>
<td>nFault/nDataAvail</td>
<td>Compatibility Mode: Set low by the peripheral to indicate that an error has occurred. The meaning of this signal varies from peripheral to peripheral. Nibble Mode: Set low to indicate that the peripheral has the data ready to send to the host.</td>
<td>Printer</td>
</tr>
<tr>
<td>33</td>
<td>Not Defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Not Defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Not Defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>nSelectIn/IEEE 1284 active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shell Frame: Chassis ground- data cable shield connection.
7.2 RS232 Serial Interface

The RS232 Interface is one of the optional Interfaces for the ITX Printer. Connection to this Interface is by a DB9 (M/F), straight through wiring, shielded cable.

Note: This serial interface only supported by FGL Firmware printers.

7.2.1 RS-232 Serial Interface Card Assembly

![Dip Switch Positions](image)

7.2.2 Serial DIP-Switch Settings

Dip Switch =

<table>
<thead>
<tr>
<th>Dip Switch</th>
<th>Notes</th>
<th>0 = 9600; 1 = 4800; 0 = 19.2K; 1 = 57.6K; 0 = 1200; 0 1 1 = (Future)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baud</td>
<td>0 = 9600; 1 = 4800; 0 = 19.2K; 1 = 57.6K; 0 = 1200; 0 1 1 = (Future)</td>
</tr>
<tr>
<td>2</td>
<td>Baud</td>
<td>0 = 9600; 1 = 4800; 0 = 19.2K; 1 = 57.6K; 0 = 1200; 0 1 1 = (Future)</td>
</tr>
<tr>
<td>3</td>
<td>Baud</td>
<td>0 = 9600; 1 = 4800; 0 = 19.2K; 1 = 57.6K; 0 = 1200; 0 1 1 = (Future)</td>
</tr>
<tr>
<td>4</td>
<td>Data Length</td>
<td>0 = 8 Bits 1= 7 Bits</td>
</tr>
<tr>
<td>5</td>
<td>Parity Check</td>
<td>0 = Disabled 1 = Enabled</td>
</tr>
<tr>
<td>6</td>
<td>Parity Type</td>
<td>0 = Even 1 = Odd</td>
</tr>
<tr>
<td>7</td>
<td>Flow Control</td>
<td>0 = Busy 1 = Xon/Xoff</td>
</tr>
<tr>
<td>8</td>
<td>(Future)</td>
<td>0 x0</td>
</tr>
</tbody>
</table>

Factory Default = 0x00 = 9600 Baud, 8 Data Bits, No Parity, Busy Flow Control

7.2.3 Serial Interface Pin-out

<table>
<thead>
<tr>
<th>Serial Adapter (DS-9S) Connector Pin No.</th>
<th>Printer Signal Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CD+</td>
<td>OUTPUT</td>
<td>Fixed spacing signal (pull-up to +5V) Carrier Detect Pull-up</td>
<td>1 = CD (I)</td>
</tr>
<tr>
<td>2XMIT</td>
<td>OUTPUT</td>
<td>Data Transmitted by the printer</td>
<td>2 = RxD (I)</td>
</tr>
<tr>
<td>3RECV</td>
<td>INPUT</td>
<td>Data Received by the printer</td>
<td>3 = TxD (O)</td>
</tr>
<tr>
<td>4N.C.</td>
<td>INPUT</td>
<td>Not Used</td>
<td>4 = DTR (O)</td>
</tr>
<tr>
<td>5Ground</td>
<td>Logic/Signal ground</td>
<td>5 = GND</td>
<td></td>
</tr>
<tr>
<td>6DTR+</td>
<td>OUTPUT</td>
<td>Fixed spacing signal (pull-up to +5V) DTR Pull-Up</td>
<td>6 = DSR (I)</td>
</tr>
<tr>
<td>7AUX_RECV</td>
<td>INPUT</td>
<td>Aux Data Receive</td>
<td>7 = RTS (O)</td>
</tr>
<tr>
<td>8/BUSY</td>
<td>OUTPUT</td>
<td>Busy flow control bit, HIGH = Not Busy/Ready for Data; (in XON/XOFF mode this signal is always Not Busy = High)</td>
<td>8 = CTS (I)</td>
</tr>
<tr>
<td>9RI+</td>
<td>OUTPUT</td>
<td>Fixed spacing signal (pull-up to +5V) Ring Indicator Pull-up</td>
<td>9 = RI (I)</td>
</tr>
<tr>
<td>Shell</td>
<td>Frame</td>
<td>Chassis ground – data cable shield connection</td>
<td></td>
</tr>
</tbody>
</table>

Typical PC Port 9- Pin
7.3 **USB Interface**

This Full Speed 2.0 USB (Universal Serial Bus) Interface has the ability to transfer data a peak rate of 12Mb/sec.

7.3.1 **USB Interface Pin-out Table**

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V Bus</td>
<td>USB Supply +5V (interface is printer powered)</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td>USB -</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>USB +</td>
</tr>
<tr>
<td>4</td>
<td>Logic Ground</td>
<td>Data ground</td>
</tr>
<tr>
<td>Shell</td>
<td>Chassis Ground</td>
<td>Chassis ground-data cable shield connection</td>
</tr>
</tbody>
</table>

7.3.2 **USB Interface Cable**

To maintain the printer’s EMI/EMC compliance and assure signal data integrity, a 2.0 Certified Compliant USB 2.0 A-B cable must be used. Also, the connected root an/or external HUB(s) must be 2.0 Certified Compliant HUB(s).

7.4 **Auxiliary I/O Connector**

This connection is a small 8-pin circular DIN connector. It is primarily used to connect external low ticket stock sensor to the printer. For other applications or the use of the 2-amp power driver consult the factory and See section 19.3.1.

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL TITLE</th>
<th>SIGNAL DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V OUT</td>
<td>5v SOURCE FOR SENSOR</td>
<td>50 mA MAX.</td>
</tr>
<tr>
<td>2</td>
<td>LED BIAS</td>
<td>SENSOR BIAS</td>
<td>120 ohms TO 5V</td>
</tr>
<tr>
<td>3</td>
<td>SENSOR TYPE</td>
<td>BIAS SELECTION</td>
<td>1K ohms TO PIN 4</td>
</tr>
<tr>
<td>4</td>
<td>LOW PAPER</td>
<td>LOW PAPER INPUT</td>
<td>15K ohms TO GROUND</td>
</tr>
<tr>
<td>5</td>
<td>LOGIC GND</td>
<td>SENSOR GROUND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+24V OUT (fused)</td>
<td>REF. VOLTAGE</td>
<td>CONSULT FACTORY</td>
</tr>
<tr>
<td>7</td>
<td>2AMP DRIVER</td>
<td>OUTPUT</td>
<td>CONSULT FACTORY</td>
</tr>
<tr>
<td>8</td>
<td>POWER GROUND</td>
<td>DRIVER GROUND</td>
<td>CONSULT FACTORY</td>
</tr>
<tr>
<td>Shell</td>
<td>FRAME</td>
<td>Chassis ground-data cable shield connection</td>
<td></td>
</tr>
</tbody>
</table>
8 TICKET STOCK HANDLING OPTIONS

8.1 Ticket Separation/Delivery Options
The ITX printers have three standard ticket separation/delivery options:
- cutter with ejector,
- cutter with stacker/retainer
- tearbar.

8.1.1 Cutter/Ejector or Tearbar – uITX Desktop Model
A uITX with a cutter has a built in ticket ejector. The ejector expels the ticket immediately after it is cut. This is designed to deliver the ticket to an attached ticket basket. The ticket basket supplied with the cutter/ejector uITX and it can catch up to ~200 tickets. The uITX printer can also be configured with a tearbar, in place of the cutter, for ticket separation.

8.1.2 Cutter/Stacker-Retainer or Tearbar – pITX Countertop Mountable Model
The pITX with cutter has a built in ticket stacker/retainer that will stack and hold at least 10 tickets. The stacker works best with short tickets. Longer tickets, or those with multiple intermediate perforations, may not stack well. The pITX printer can be also configured with a tearbar, in place of the cutter, for ticket separation.

8.1.3 Cutter/Ejector – kITX Kiosk Mountable Model
A kITX comes with a cutter that has a built in ticket ejector. The ejector expels the ticket immediately after it is cut. This is designed to deliver the ticket to a user’s ticket basket or into a user isolation drop well.

8.1.4 Cutter/Ejector – eITX Desktop Model (with Ticket Enclosure Cabinet)
A uITX with a cutter has a built in ticket ejector. The ejector expels the ticket immediately after it is cut. This is designed to deliver the ticket to an attached ticket basket. The ticket basket supplied with the cutter uITX can catch up to 200 tickets.

8.2 Low Ticket Stock (Paper) Monitoring – Auxiliary Input Port
All ITX printers, except for eITX, require that the ticket stock be placed external to the printer. Two common methods for implementing low paper detection are optical sensor or mechanical switch. The auxiliary port, on the rear of the ITX printer chassis, can accommodate either. Refer to sections 2.4.5 and 8.2.3 for available ticket-stock holders with low paper detection.

8.2.1 Low Ticket Stock (Paper) Host Status Information
The low ticket (paper) status information, acquired through the printer’s auxiliary port, is available to host system, over the printer’s data interface reverse channel (unless the "DISABLED" EEPROM parameter option is selected). It is the responsibility of the connected host system to detect and react to this condition by notifying service personnel to attend to the paper condition.

8.2.2 Printer Reactions to the Low Ticket Stock (Paper) Condition
There are several programmable printer reactions to the low paper condition. If the "STATUS Only" (default mode) is selected, the printer will only display the condition on the switch and display panel, by a slow flashing of the P/P (Power/Paper) LED. If the "WARNING ONLY" is selected, the printer will sound a warning beep each time a document is printed. If the "BUSY after document printed" option is selected the printer will complete the document in process and go offline. This reaction is distinguished from out of paper, in that the low paper warning provides enough paper in the path to complete the document in process. If the "DISABLED" option is selected the printer ignores the low paper signal.
8.2.3 Ticket Holder with Low Ticket Detection

This accessory holds a supply of tickets (mounted below the printer) and has an adjustable low-ticket sensor. The ticket holder is connected, to the printer, with a cable and the low-ticket supply condition becomes available, to the host PC, through the printer's status information. The low-ticket sensor is a weight sensing mechanism with an adjustable spring tension for changing the low-ticket supply detection point.

There are two ticket holder models available (see section 19.2.20) for dimensional drawing. These are distinguished by their ticket width (GTX-THLP-2 with max. ticket width of 2.5” and GTX-THLP–4 with a max. ticket width of 4.5”). Ideally, the tickets should be boxed with an easily removed top for convenient loading. Also, the box supports the tickets when the stack height exceeds the 5 inch support height of the ticket holder. The ticket holder can be adjusted to accommodate ticket fold lengths from 8 to 12 inches long. The procedure to adjust this ticket holders low paper detection point is provided in an application note that in on the Practical Automation WEB site in the “Technical Notes” sub-section of the ITX printer.

http://www.practicalautomation.com/download.html
9 TICKET STOCK INFORMATION

9.1 Ticket Stock Specifications

9.1.1 Form Type
The ITX printer is optimized for perforated ticket stock with registration marks.

9.1.2 Ticket Stock - Thermal Paper Types:
The list below is a list of thermal paper manufacturers and some of their product offerings.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Technical Contact</th>
<th>Telephone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appleton</td>
<td>Resiste 600-7.5¹</td>
<td>Katherine Kahlenberg</td>
<td>1-920-991-8640</td>
</tr>
<tr>
<td>Ricoh</td>
<td>150TLA¹; 150LAM; 120TLA and 120TLD</td>
<td>Robert Molina</td>
<td>1-314-441-4665</td>
</tr>
<tr>
<td>Kanzaki</td>
<td>KT-300¹; KT-570</td>
<td>Mike Daty</td>
<td>1-413-736-3216</td>
</tr>
<tr>
<td>Nashua</td>
<td>TT15618 ; TT10618</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Recommended ticket stocks.

9.1.3 Ticket Stock - Paper Converter Vendor List
These paper converters take the raw thermal paper from the above manufacturers and produce finished tickets.

Listing of Converters

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTING TECHNOLOGIES INC</td>
<td>800-428-3786 or 317-228-6400</td>
</tr>
<tr>
<td>7768 Zionsville Road, Suite 400</td>
<td>Fax: 317-228-6401</td>
</tr>
<tr>
<td>Indianapolis, Indiana 46268</td>
<td>Walt@printingtechnologies.com</td>
</tr>
<tr>
<td>Walter Alfred</td>
<td>sandy@printingtechnologies.com</td>
</tr>
<tr>
<td></td>
<td>Walt@ptionaroll.com</td>
</tr>
<tr>
<td>LABELRITE</td>
<td>610-279-0166</td>
</tr>
<tr>
<td>55 East Front Street C-119</td>
<td>Fax: 610-279-4725</td>
</tr>
<tr>
<td>Bridgeport, PA 19405-1460</td>
<td>Label@prodigy.net</td>
</tr>
<tr>
<td>Jack MacILvain</td>
<td></td>
</tr>
<tr>
<td>Dave Lawler</td>
<td></td>
</tr>
<tr>
<td>Weldon, Williams, and Lick, Inc.</td>
<td>800-242-4995</td>
</tr>
<tr>
<td>711 North A Street</td>
<td>Fax: 501-783-7050</td>
</tr>
<tr>
<td>ForthSmith, AR 72901</td>
<td>sales@wwlin.com</td>
</tr>
<tr>
<td>Steve Lensing x407</td>
<td></td>
</tr>
<tr>
<td>RITTENHOUSE</td>
<td>800-323-4265 x 766</td>
</tr>
<tr>
<td>250 South NorthWest Hwy.</td>
<td>Fax: 800-360-7488</td>
</tr>
<tr>
<td>Park Ridge, IL 60068-4263</td>
<td></td>
</tr>
<tr>
<td>Joanne Murray</td>
<td></td>
</tr>
<tr>
<td>GLOBE TICKET AND LABEL</td>
<td>800-523-5968</td>
</tr>
<tr>
<td>300 Constance Drive</td>
<td>Ask for local Rep</td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
</tr>
</tbody>
</table>
Listing of Converters

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAIN-DRUMMOND</td>
<td>905-238-8866 x 256</td>
</tr>
<tr>
<td>2800 Skymark Ave. Suite 301</td>
<td>416-501-2512 Pager</td>
</tr>
<tr>
<td>Mississauga, Ontario L4W 5A6</td>
<td>Fax: 905-238-6486</td>
</tr>
<tr>
<td>Dave Gilbert</td>
<td>Dgilbert@globalcon.com</td>
</tr>
<tr>
<td>National Ticket Company</td>
<td>800-829-0829</td>
</tr>
<tr>
<td>Ticket Avenue</td>
<td>717-648-6803</td>
</tr>
<tr>
<td>PO Box 547</td>
<td>Fax: 717-648-9460</td>
</tr>
<tr>
<td>Mississauga, Ontario L4W 5A6</td>
<td>tickets@nationalticket.com</td>
</tr>
<tr>
<td>Bill Alter</td>
<td></td>
</tr>
<tr>
<td>Mercury Ticket Company</td>
<td>800-906-6999</td>
</tr>
<tr>
<td>1438 Fletcher Road</td>
<td>306-384-8000</td>
</tr>
<tr>
<td>Saskatoon, Saskatchewan S7M 5T2</td>
<td>Fax: 306-384-4050</td>
</tr>
<tr>
<td>Ken Wasden</td>
<td>itmercury@ibm.com</td>
</tr>
<tr>
<td>Canada Ticket Inc.</td>
<td>800-576-5511 x 309</td>
</tr>
<tr>
<td>9520 192nd Street, STE 4</td>
<td>604-888-1200</td>
</tr>
<tr>
<td>Surrey, British Columbia V4N-3R9</td>
<td>Fax: 800-944-9424</td>
</tr>
<tr>
<td>Steve Wengrowich</td>
<td>www.candaticket.com</td>
</tr>
<tr>
<td>Ticket Craft</td>
<td>800-645-4944</td>
</tr>
<tr>
<td>1390 Jerusalem Avenue</td>
<td>516-538-6200</td>
</tr>
<tr>
<td>Merrick, NY 11566</td>
<td>Fax: 516-538-4860</td>
</tr>
<tr>
<td>Evelyne Cook</td>
<td>tickets@ticketcraft.com</td>
</tr>
<tr>
<td>Amlon Industries, Inc.</td>
<td>800-544-2131</td>
</tr>
<tr>
<td>254 Helicopter Circle</td>
<td>909-278-8888</td>
</tr>
<tr>
<td>Corona, CA 91720</td>
<td>Fax: 909-278-8891</td>
</tr>
<tr>
<td>Jason Rogers</td>
<td></td>
</tr>
</tbody>
</table>
9.1.4 Ticket Stock Drawing (ITX 2/3002/3Fixed & ITX 2/3004AS Adjustable Width “AS” Suffix Models)

9.1.5 Ticket Stock Drawing (ITX 2/3003A & ITX 2/3004A - Adjustable Width “A” Suffix Models)
9.1.6 **Ticket Stock Drawing – Common to all ITX Printer Models**

In applications where Fixed and/or “AS” Adjustable Width Printers are used in conjunction with “A” Adjustable Width Printers, a common ticket stock can be used. The ticket stock can be made with printing the registration marks along both edges of the ticket, as shown below. Alternatively, the registration marks can be printed across the full width of the ticket.

![Diagram of ticket stock drawing]

9.1.7 **Stock Width**

- ITX 2002/3002: 2.00 ±0.015” (50.8 ± 0.4 mm)
- ITX 2003/3003: 3.25 ±0.015” (82.6 ± 0.4 mm)
- ITX 2003A/3003A: 2.00” (50.8 mm) Min. to 3.25” (82.6 mm) Max.
- ITX 2004A/3004A: 2.00” (50.8 mm) Min. to 4.00” (101.6 mm) Max.
- ITX 2004AS/3004AS: 2.00” (50.8 mm) Min. to 4.00” (101.6 mm) Max.

9.1.8 **Stock Thickness**

0.004"- 0.0075" (0.1- 0.19mm) typical

9.1.9 **Perforations**

Perforations at 12 TPI (Ties Per Inch) is common for most ticket stock. When a tearbar is used for separating tickets a more coarse perforation (6TPI with a 0.045" tie) may be preferable. It permits easier bursting at the tear edge.

9.1.10 **Registration Marks**

Registration marks must be printed with ink that produces a 5:1 contrast ratio to infrared light (890-935nm). The clear zone in between the registration marks must be free of printing or else be printed with ink that reflects infrared light.

Refer to the drawings above for dimensions. Note the distance from cut line to the cut position sensor is factory set to 6.70”. This location is user adjustable to accommodate other ticket stocks, refer to section 9.3.4.
9.1.10.1 Registration Mark Location Formula:

\[D_{\text{CRM}} = 6.7" - (T_L \times m) \]

where:
- \(D_{\text{CRM}} \) = distance from cut line to registration mark
- \(T_L \) = ticket length in inches
- 6.7" = physical distance from cut line to sensor
- \(m = \frac{6.7"}{T_L} \) (multiple of tickets within 6.7"; integer value)

Examples:

- \(T_L = 5.5" \)
 - \(m = \frac{6.7"}{5.5"} = 1 \)
 - \(D_{\text{CRM}} = 6.7" - (5.5" \times 1) = 1.2" \)
- \(T_L = 2.0" \)
 - \(m = \frac{6.7"}{2.0"} = 3 \)
 - \(D_{\text{CRM}} = 6.7" - (2.0" \times 3) = 0.7" \)

Note: Refer to an application note, on this topic, in the “Technical Notes” section for the ITX printers on the Practical Automation WEB site: http://www.practicalautomation.com/download.html

9.1.11 Ticket Length

The minimum recommended ticket length is 2.5". A 2.0" length is commonly used, however, this short length can make grasping the ticket, extending from the output door of the pITX, somewhat difficult. The maximum printable length is determined by the image ram size and is 10.9". With this as a understood limitation the ticket can be longer, however, unprintable beyond 10.9".

9.1.12 Ticket Stock Pre-Printing Information

9.1.12.1 Pre-Printed Ticket Stock: Bottom Side Restrictions

All versions of the ITX utilize optical sensors to monitor the progress of ticket stock through the system. Pre-printing of the ticket stock in the area of these sensors should be avoided unless an infrared reflecting ink is used. High contrast ratio printing in these areas can interfere with this monitoring. Refer to the drawing (9.1.4) above for the location of these restricted areas (“clear zone”).

9.1.12.2 Pre-Printed Ticket Stock: Top Side Restrictions

Preprinting on the thermally active side of the ticket stock should only be done using inks compatible with direct thermal printing. Also, insure that the host application only prints (thermally) in the un-inked areas.
9.1.13 Example 2.0" Length Ticket Drawing for Fixed Width and “AS” Adjustable Width printers

9.1.14 Example 5.5" Length Ticket Drawing for Fixed Width and “AS” Adjustable Width printers
9.2 Ticket Stock Thermal Response Characteristics

9.2.1 Print Activation Energy

Thermal inks have two main properties that affect the energy required to turn completely black. The first is the activation temperature and the second is the activation time. These parameters are somewhat related, as it takes more time for the printhead to get hotter. However, it is possible to have thermal ink that needs a longer time at a lower energy to convert to black completely. Adjusting the energy profile helps to match the printhead to the thermal ink.

The ITX has three parameters for adjusting the print energy. These are provided to accommodate ticket stock with a broad range of thermal response characteristics. The default factory energy level setting has been optimized for the most common types. If the ticket stock requires more or less print energy, the setting can be changed to achieve the best results.

- **Print Energy Level** (section 10.3.1.1): Adjusts the print energy in small increments. This should be set to the lowest value that provides solid black printing. Range from 1 to 16, default is 6. Note that as this setting increases, the print speed decreases – more heating requires longer cooling times.

- **Print Energy Table** (section 10.3.1.4): The “Normal” table provides the energy settings for the standard print speed (203dpi = 8IPS, 300dpi = 6IPS). The “Alternate” table provides the energy settings for the faster print speeds (203dpi = 10IPS, 300dpi = 8IPS). In general, faster print speeds require faster thermal stock.

- **Warm Time Adjust** (section 10.3.1.5): Modifying this parameter changes the thermal dot history controls. This setting affects the amount of dot smearing. Its effect will primarily be noticed in large black regions and barcodes. When printing two or more dots in a row the first dot requires more energy and the following dots require less energy. The printhead element is still “warm” from energizing the previous dot. If the Warm Time setting is too long, then the dots will smear. If the Warm Time is set too short then black regions, graphics, etc. may not be as dark as desired.

9.2.1.1 Optimizing the Print Energy Settings

If the print quality is not acceptable with your ticket stock, consider the following steps:

- Obtain newer ticket stock. Recent improvements do not necessarily cost more. Refer to the ticket vendor list (9.1.3).
- If the text is not crisp, clear, or dark enough increase the Print Energy Level to the lowest acceptable level.
- If graphics or barcodes are smearing decrease the Warm Time Adjust.
- If larger black regions are not dark enough increase the Warm Time Adjust.

9.2.1.2 Converting from ETX2000/LTx2000 to ITX2000

The ETX/LTx printed well on older/slower ticket stock. However, when printing with newer/faster stock, the ETX/LTX creates significant smearing on barcodes and graphics. In some cases it appears that smaller fonts have been “bolded” by this smearing. If you are upgrading your printer from ETX/LTX to ITX you may need to increase both the Print Energy Setting and the Warm Time Adjust. We suggest, as a starting point, a Print Energy Level of “12” and a Warm Time Adjust of “WT+1” will give a close approximation of the ETX/LTx performance.

9.3 Ticket Position Optical Sensors

The ITX has two optical sensors used to detect the position and presence of the ticket stock. The inner most sensor is the cut position sensor. Its factory set location is 6.7" from the cut (or tearbar) line. The second sensor is mechanically arrayed to the cut sensor. It is the load sensor. Its factory set position is 1.10" behind the cut sensor. The primary ticket positioning sensor is the cut sensor. It is used to align the cut with respect to the registration mark. This alignment also aligns the printhead with the print area of the ticket. The load sensor has several auxiliary functions. At ticket auto-loading time it detects the registration mark coming to rest and triggers the drive motor to load the ticket stock. It also works in conjunction with the cut sensor for ticket positioning and out of paper detection.
9.3.1 Sensor Location: ITX 2000/3000 – Fixed Width Models

9.3.2 Sensor Location: ITX 2003A/2004A/3003A/3004A – Adjustable Width Models

9.3.3 Sensor Location: ITX 2004AS/3004AS – Adjustable Width Models

9.3.4 Sensor Position Adjustments
The cut sensor position, and the mechanically arrayed load sensor, can be adjusted from the factory set position of 6.7” (170.2 mm) behind the cut line. The purpose of this adjustment is two fold: (1) cut/tear position adjustment (2) to accommodate ticket...
stock with non-standard placement of the registration mark. The range of available adjustment is from 3.8" to 6.8" (96.5 mm to 172.7 mm).

9.3.5 Cutting Behind the Perforation

Cutting on the perforation is not recommended. The correct cut position is approximately 1/16” behind the perforation. When this position is correctly set, the ticket emerges with the perforation at the trailing edge and with 1/16” of material attached to the perforation. Although cutting directly on the perforation can often be successful, occasional incomplete cuts may occur. This incomplete cut is due to the paper folding at the perforation and preventing the normal shearing action of the cutting blades. Incomplete cuts can cause jams.
9.4 Ticket Form Length Determination

9.4.1 Printer Ticket Length Determination
The printer needs to determine the length of tickets it will be printing on. This ticket length information will be available to the host system as printer status information. The printer also uses it to determine the maximum printable length. The start of print and cut position alignment are, however, always referenced using the ticket’s backside registration marks. The position of the print, cut and the length of the ticket are all accomplished by detecting these registration marks. The registration mark sensors are mounted to the ticket input tray. The printer’s methods for determining the ticket length are listed below.

9.4.1.1 Auto-Sizing
The default setting is to auto-size the ticket every time the printer is powered on. This measures the distance between the registration marks as well as calibrates the optical sensors to the contrast ratio of the marks. Auto-size enabled is the recommended setting.

9.4.1.2 Disabling Auto-Sizing
The process of auto-sizing advances the ticket stock so that almost the entire ticket is outside the output slot of the printer. In certain situations, this ticket motion may not be desirable. Some ticket stock is weaker at the perforations and this can cause the ticket to flex. The extra movements associated with auto-sizing, especially the reverse direction, can cause the ticket to separate at the perforation, or the perforation can get caught, not permitting the ticket to fully retract (jam). Disabling the auto-sizing does not disable the sensor calibration or the initial position alignment to the registration mark in preparation for printing. At power up, or whenever new ticket stock is introduced, a few short ticket moves will occur. Note with auto-sizing disabled if the size of the ticket has changed, registration errors may occur. Always use the auto-sizing when using different length tickets.

There are two choices for disabling auto-sizing (1) Disabling the Auto-Size Back-up (2) Used Stored Ticket Size. Use the EEPROM menu (section 10.2;10.4.1.3) to change the System Control [MODE] to the settings indicated.

9.4.1.2.1 Disabling Auto-Size Back-Up
This selection eliminates the backup motion associated with the auto-size process (noted above). This can prevent snagging that can occur, on the reverse motion, for certain types of ticket stock. The ticket length will be measured normally, by moving the ticket forward through the output slot of the printer. The retraction will be eliminated and the stock will be cut off (if a cutter is installed) or left forward (for a tearbar). To disable the auto-size backup the EEPROM system control parameter [MODE] need to be set to “AUTO WITHOUT BU”.

9.4.1.2.2 Use Stored Ticket Size
This selection completely disables auto-sizing. This is done by changing the EEPROM System Control parameter [MODE] to “USE STORED SIZE”. This will instruct the printer to assume that the actual size of the ticket is the value stored in the EEPROM. If ticket stock used is different form the valued stored in the EEPROM ticket registration errors may occur.

9.4.1.2.3 Entering the STORED SIZE
There are two ways to enter a ticket size into the EEPROM memory: (1) by entering a predetermined number (2) storing the last value measured during the auto-size process.

9.4.1.2.3.1 Entering a Fixed Size Manually
Following the process described in section 10.4.1.1, a manually entered ticket size can be saved in the EEPROM memory.

9.4.1.2.3.2 Entering the Measured Size Automatically
The last measured ticket length can automatically be stored using the Special Functions Menu (refer to section 12.2.1). First, hold F1 while turning on the power. The auto-sizing process will begin, and then the Diagnostic Menu will be printed. Press F0, and the Special Functions Menu will be printed. Press and hold the F0 button for 5 seconds until a sequence of rapid beeps is heard. This will copy the measured size into the EEPROM memory.
10 EEPROM PARAMETER STORAGE MEMORY

10.1 EEPROM Parameter Memory Overview
The EEPROM parameter memory is used to store a variety of printer configuration parameters. These stored parameters provide the data which customizes the operation of the printer to the particular application. Examples of this are: print intensity parameters are used to set the printer to match the response characteristic of the media being used; selections for the printer's reaction algorithm to a low paper signal, etc. The details of each parameter are listed below.

10.2 EEPROM Change Menu Entry
The EEPROM Change is menu is entered, at power on, using the switch sequence noted below.

```
*                   EEPROM ENTRY HELP                    *
**                   **                                 *
Turn off power to printer.  
Hold F3 while turning on power. 
Hold F3 until 1st beep/flash.  
Release F3, wait for 2nd beep/flash.  
Press F3 twice quickly, hold second 
Press until printing starts.  
```

10.2.1 EEPROM Change Menu Operation
The EEPROM change menu is a collection of printed menus, which permit the selection, and change of stored parameters. The EEPROM menu is entered via a power-on switch operation (refer to section 4.5.2). Upon entry into the menu, a help report is printed, which details the menu operations, followed by the first EEPROM parameter menu. Refer to the help menu below for parameter change and secondary menu access procedures.

```
*                   EEPROM HELP                    *
**                   **                                 *
F0        = MOVE cursor (>) UP  
F1        = MOVE cursor (>) DOWN  
F2        = CHANGE Option @cursor  
F3        = ENTER Next MENU level  
POWER OFF  = EXIT EEPROM MENU  
```

PRINT of parameter menu occurs 1 second after pressing any switch. By pressing F0 or F1 several times quickly and counting the beeps, the cursor can be moved several positions before the next printout. Pressing F2 at the counted target will change the selection. This technique permits changes to be entered quickly without printing after each switch press.

10.2.2 Active and Inactive Menu Line
Some parameters on the menu are not changeable. They are only for display or reference while others may become active on future firmware versions. The cursor will skip menu lines that are not active. Active parameters, or the associated menu lines, are shown with brackets around them. For example: INCREMENT and DECREMENT are active parameter menus lines. These lines affect the PRINT INTENSITY line, which displays the result.
10.3 EEPROM Menu #1 Printout

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTENSITY</td>
<td>6</td>
</tr>
<tr>
<td>> INCREMENT</td>
<td></td>
</tr>
<tr>
<td>DECREMENT</td>
<td></td>
</tr>
<tr>
<td>ENERGY TABLE</td>
<td>NORMAL</td>
</tr>
<tr>
<td>WARM TIME ADJ</td>
<td>NORMAL</td>
</tr>
<tr>
<td>IPS CLAMP</td>
<td>NO LIMIT</td>
</tr>
<tr>
<td>CUTTER MODE</td>
<td>ENABLE</td>
</tr>
<tr>
<td>LOW PAPER</td>
<td>STATUS Only</td>
</tr>
<tr>
<td>BEEPER</td>
<td>ON</td>
</tr>
</tbody>
</table>

10.3.1 EEPROM Menu #1 Parameters Definitions

10.3.1.1 Print Intensity
(Display) The amount of print energy applied to each printed dot is displayed. The lowest (lighter print) selection is "1" and the highest (darker print) is "16". A setting in the range of 4 to 8 is typical.

10.3.1.2 Increase Print Intensity
This parameter increases the applied energy level by one. Refer to section 9.2 for additional information.

10.3.1.3 Decrease Print Intensity
This parameter decreases the applied energy level by one. Refer to section 9.2 for additional information.

10.3.1.4 Print Energy Table
The selections for this parameter are: "Normal", "Alternate". “Normal” contains the standard print energy settings. “Alternate” contains settings for faster printing on fast ticket stock.

10.3.1.5 Warm Time Adjustment
There is a careful balance between print energy, print speed, and the blurring of dark areas. In general, the Print Intensity setting above should be adjusted to the lowest number that produces the best looking text. The Print Energy Table determines the print speed. After these settings are adjusted (or left at the factory defaults), examine the dark regions and graphics, including any barcodes. If the edges of dark areas are blurred, especially barcodes, then decrease the Warm Time setting. If the center of larger dark regions do not stay dark, increase the Warm Time.

10.3.1.6 IPS Clamp (‘G’ only)
In Raster ‘G’ mode, the printer is printing the data as quickly as it is sent by the host PC. In some cases, the data rate may be slow or inconsistent, which can lead to print anomalies. If you observe this, then you can change the User IPS clamp to either automatically adjust to the host data rate, or to force a fixed slower print speed. The default setting is “NO LIMIT”, which assumes the data rate is fast enough to print at the maximum speed. The next selection is “ADAPTIVE”, which instructs the printer to measure the data rate and reduce the print speed to match. The following selections set a reduced print speed of –17%, -33%, -50%, -67%, and “MINIMUM”.

10.3.1.7 Cutter Mode
The selections for this parameter are: “ENABLED”, “DISABLED”. This parameter modifies the cutting mode of an attached cutter. The “ENABLED” mode is the default operational mode. The “DISABLED” mode can be used to temporarily inhibit the cutting action. Sometimes when batch printing tickets from an application where the cutter’s operation cannot be changed by modifying the application’s software, the “DISABLED” mode can be used to prevent cutting and permit a string of attached tickets to be printed. Reference section 8.1 for additional information.
10.3.1.8 Low Paper
Selections for this parameter are: "STATUS Only" or "WARNING ONLY" or "BUSY after document printed" or "DISABLED". Refer to section 8.2 for additional information.

10.3.1.9 Beeper
The selections for this parameter are: "ON", "OFF." Used to turn off the beeper for continuously occurring tones associated with printer errors, etc. The user created beeps associated with switch pressing, etc. will still occur.
10.4 EEPROM Menu #2 Printout

 STORED FORM SIZE 5.50
 *MODE AUTO WITH BU
 *SIZE 10s 0
 *SIZE 1s 5
 CHANGE SIZE
 *SIZE 0.1s 5
 *SIZE 0.01s 0
 *STATUS POINTER SHORT
 *INTERFACE MISC NORMAL
 *PURGE SPOOLER DISABLED
 *PNP RESPONSE ENABLED
 *CONFIG OPTION STANDARD

10.4.1 EEPROM Menu #2 Parameters

10.4.1.1 Change Stored Size: Forms Len 10’s, 1’s, 0.1’s, 0.01’s
Each one of these menu lines causes an incremental change to one of the four digits of the Form Stored Size. Incrementing past 9 returns the digit to 0. Refer to section 9.4.1.2.3.1 for additional information.

10.4.1.2 Form Stored Size
(Display) This data is changed, by the above menu lines or can be automatically loaded using the document's measured size. Refer to section 9.4 for additional information.

10.4.1.3 Form Mode
The selections for this parameter are "USE STORED FIXED SIZE", "AUTOSIZE WITH BU ENABLED", "AUTOSIZE NO BU ENABLED". Refer to section 9.4.1.2.3 for additional information.

10.4.1.4 Status Pointer
The selections for this parameter are: "SHORT", "NORMAL", "EXTENDED", "COMPLETE". Reference the Programmers Guide for additional information. This parameter determines the status returned to the host if no alternate selection is made, by a command, sent over the data interface.

10.4.1.5 Interface Misc.
The selections for this parameter are: "NORMAL" and "ACK 0.5US". NORMAL does not exercise the ACK signal on the parallel port. The other selection transmits a 0.5 uSec ACK pulse for those systems that require it.

10.4.1.6 Purge Spooler Control
The selections for this parameter are: "ENABLED" or "DISABLED". This parameter effects how the printer interface handles the unsent data after an error occurred during the printing of a document. The default value is "DISABLED" for FGL, and "ENABLED" for ‘G’. These are different because of the different data modes.

10.4.1.7 Plug and Play (PNP) Response (FGL Only)
For some applications that communicate directly with the printer, the Windows Plug and Play process is a nuisance. Setting this to "DISABLED" will prevent Windows from reporting “New Hardware Found” on every power up. For all situations that require a Windows driver and/or Language Monitor, leave this setting to “ENABLED”.

10.4.1.8 Configuration Option
Certain customers have requested unique settings or actions. This setting will report a unique code for those customers. This is usually set at the factory and should not be changed. This can be changed using this menu, allowing customers with different installation requirements to reconfigure the printer.
10.5 EEPROM Menu #3 Parameters

*PARALLEL INTERFACE ECP MODE
*LP CABLE DETECT PASSIVE
*HALF RESOLUTION DISABLED

10.5.1 Parallel Interface (‘G’ Version Only)
The PC’s IEEE1284 Parallel Port has several operating modes. The default is “Compatibility Mode” which emulates the original Centronics Parallel Interface. Depending on the PC’s Operating System the Compatibility Mode can provide adequate (Win 98/ME) or marginal (Win2K/XP) data delivery rate. Using printer firmware V1.02 (or later) in conjunction with the Printer Driver V2.02 (or later) permits Parallel Port ECP mode operation. (Note: ECP, with DMA, must be selected in the PC’s BIOS). When the PARALLEL INTERFACE selection is set to “ECP MODE” the printer will negotiate with the host PC and operate in this high data rate transfer mode. If the PARALLEL INTERFACE selection is set to Compatibility mode the printer will not negotiate with the host PC to go into ECP mode. This setting disables ECP MODE and enables Compatibility mode.

10.5.2 Low Paper Cable Detection

If your printer is equipped with the Low Paper Sensor that has Active Cable Detection (4th quarter 2004), then, by setting the LP CABLE DETECT to “ACTIVE” it will enable two actions:

1- the connected status (connected or disconnected), of the Low Paper cable, will be reported in the printer’s status information (refer to the Programmer’s Guide).

Note: an older Low Paper sensor, w/o the Active cable detection capability will always “appear” to be disconnected if the LP CABLE DETECT is set to “ACTIVE”.

2- If the Low Paper cable is disconnected, the Printer’s Low Paper condition will be forced and reported in the printer’s Low Paper status information (refer to the Programmer’s Guide).

Setting the LP CABLE DETECT to “PASSIVE” it prevents old Low Paper sensor from being reported as disconnected yet permits the new Low Paper cables to be detected as connected

The following table is an overview of the settings and conditions for Low Paper Cable Detection:

<table>
<thead>
<tr>
<th>Low Paper Sensor Type</th>
<th>EEPROM setting</th>
<th>Cable Condition</th>
<th>Printer Status Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Connected</td>
<td>Field 00</td>
</tr>
<tr>
<td>New (w/Active cable detection)</td>
<td>Passive</td>
<td>as Detected</td>
<td>Connected = C</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>as Detected</td>
<td>Connected = C</td>
</tr>
<tr>
<td>Old (Passive)</td>
<td>Passive</td>
<td>as Detected</td>
<td>Connected = C</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>as Detected</td>
<td>Connected = C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connected</td>
<td>Known</td>
</tr>
</tbody>
</table>

Unknown = Neither the uppercase or lowercase “C/c” characters are reported
10.5.3 **Half-Resolution (FGL Only)**

It is possible to emulate 100dpi with a 200dpi printer by changing this selection to ENABLED. A 300dpi printer will perform at 150dpi in this situation. Note that this feature is not enabled in the ‘G’ version.

10.6 **Restoring Factory Default Settings**

Press the following key sequence to reset the EEPROM settings to their original factory defaults. On power up, press <F1> to enter Diagnostics. Press <F0> for Special Functions. Press and hold <F1> for 5 seconds until 5 rapid beeps are heard. Release the button and cycle the power. Reference sections 5.1.3 and 12.2 for additional information.
11 ERROR CODES

11.1 Annunciation – Flash/Beep
The ITX printer uses the switch and display panel to output operational conditions or errors, to the user, by a series of sequential buzzer tones (beeps), which coincide with the flash of the ATTN/ERR LED. The flash/beep error signal is of a long (1) or short (0) duration. The flash/beep signals are arranged as a coded sequence, followed by a long quite pause, before repeating.

11.1.1 Sequence Length – Flash/Beep
These flash/beep sequences are arranged into three groups. These groups are distinguished by a three, four or five flash/beep signal length sequences. The flash length grouping identifies the type of error that has occurred:
- The five flash/beep sequence represents a Diagnostic Errors.
- The four flash/beep sequence represents a Operational Errors.
- The three flash/beep sequence represents a Temporary Conditions or Errors.

11.1.2 Weighted Positions
Each flash/beep signal represents the equivalent of a one (1), for a long, and a zero (0), for a short. Each position in the sequence has a binary weight. The first is given a weight of 1, while the second would be 2, the third 4, etc.

11.1.3 Counting
To determine the error code, first identify the number of flash/beeps in the sequence group. Next, for each flash/beep signal, which is short (0) the binary weight associated with it, is not counted. For each long (1) flash/beep signal the binary weight associated with it is counted.

11.1.4 Example
The following example is provided for determining an error code. The error code sequence is represented below by the following:

[Short] [Long] [Long] [Short] the sequence repeats after a long quiet pause

Determining the error code is as follows:

-a- The number of flash/beep signals in the sequence is four (4).
-b- Counting from the first flash/beep signal each has the weight of: 1 ; 2 ; 4 ; 8 respectively.
-c- Only the middle two are counted. The error code is: 2 + 4 = 6.
-d- The error code 6 is listed in the table of errors under the four code sequence.
-e- This error indicates that the Printhead Lever is Opened.
-f- See section 11.2 for the table of error codes. Note also that the error codes are printed on the system help report.
11.2 Error Code Table – Flash/Beep

<table>
<thead>
<tr>
<th>Number of Flash/Beep signals in a repeated sequence</th>
<th>Flash/Beep Error Code</th>
<th>Flash/Beep Error Code Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>1</td>
<td>MPU/System Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>2</td>
<td>RAM Fault Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>3</td>
<td>EEPROM Checksum Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>4</td>
<td>FLASH Memory Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>5</td>
<td>Character Generator Memory Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>6</td>
<td>IMAGE Memory Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>7</td>
<td>Analog to Digital Converter Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>8</td>
<td>FPGA/ASIC Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>9</td>
<td>Voltage Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>10</td>
<td>Printhead Thermistor Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>11</td>
<td>Printhead Data Error</td>
<td>na</td>
</tr>
<tr>
<td>[5]</td>
<td>12</td>
<td>Printhead Print Resistor Error</td>
<td>f</td>
</tr>
<tr>
<td>[5]</td>
<td>13</td>
<td>Cutter Initialization Error</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>15</td>
<td>Miscellaneous Error</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>2</td>
<td>Cutter Operational Error</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>3</td>
<td>Transport Presenter Error</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>5</td>
<td>Registration Mark Detection Error</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>8</td>
<td>Interface Data Error</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>1</td>
<td>Ticket Not Taken Condition</td>
<td>na</td>
</tr>
<tr>
<td>[3]</td>
<td>2</td>
<td>Ticket Not Presented</td>
<td>na</td>
</tr>
<tr>
<td>[3]</td>
<td>3</td>
<td>Printhead too hot/cold – wait</td>
<td>s</td>
</tr>
<tr>
<td>[3]</td>
<td>4</td>
<td>Average power – wait</td>
<td>s</td>
</tr>
<tr>
<td>[3]</td>
<td>5</td>
<td>Interface Data Error has occurred – warning</td>
<td>(s)</td>
</tr>
</tbody>
</table>

11.2.1 Error Code Table Notes
(f) Future
(na) Not applicable
(s) The beep is disabled for this flash/beep signal.

11.2.2 Error Code Table Information
Each flash/beep signal, of the repeated sequence, has a binary weighted value. The first is the least significant (1,2,4,8,16). Each flash/beep signal is a long (1) or short (0) duration. For each long duration flash/beep signal the associated binary weight value is counted. For each short duration beep/flash signal the binary weight value is ignored.
11.2.3 Error Code Computation

Where:

- n = flash/beep signal duration
- 1 = long duration flash/beep signal
- 0 = short duration flash/beep signal

Error Code (summation): \((n \times 1) + (n \times 2) + (n \times 4) + (n \times 8) + (n \times 16) \)
12 DIAGNOSTICS and MAINTENANCE
A wide range of diagnostic functions have been built into the printer. These assist the factory production, field installation and customer service.

12.1 Diagnostic Entry
Entry into the diagnostic sub menu and other diagnostic support functions are Power On Switch Panel Operations, refer to section 4.5.2. The access switch sequence is detailed below on the help menu. This menu is part of the System Information Help Report (refer to section 4.5.2.4).

* POR SWITCH HELP *

Apply power to unit while holding:
F0 = SYSTEM STATUS
F1 = DIAGNOSTICS
F2 = NOT USED
F3 = EEPROM MENU
F0 & F1 = RE-PROGRAM FLASH MEMORY
F0 & F2 = PRINthead CLEANING
(F0/F1=Fwd; F2/F3=Rev)
F2 & F3 = HEX DUMP MODE

12.2 Diagnostic Sub Menu
This diagnostics sub menu provides access to four selections: Special Functions, Factory Burn-In, Cut and Serial tests.

* DIAGNOSTIC HELP *

After entering this DIAGNOSTIC menu
press and release:
F0 = SPECIAL Functions
F1 = BURN-IN test
F2 = CUT test
F3 = Serial Port Test

12.2.1 Special Functions
These Special Functions are designed to make quick changes to the EEPROM. Refer to section 10 for more details on the EEPROM settings and how to change them. The printer must be power cycled to exit this Special Function menu.

12.2.1.1 [F0] – Store AutoSize in EEPROM
This is a quick method of updating the parameter EEPROM storage with the measured size of a registration marked ticket. By holding the F0 button for 5 seconds, the measured size of the ticket will be stored in the EEPROM, and the auto-sizing [MODE] option will be changed to “USE STORED SIZE”. Auto-sizing will not occur in the future. Refer to section 10.4.1.2 for more details.

12.2.1.2 [F1] - Reset EEPROM
This is a quick method of resetting the printer parameters back to the factory default settings. The F1 button must be pressed for at least 5 seconds. Refer to section 5.1.3.1 for more details.
12.2.1.3 [F2] – Printhead Adjustment
This is a quick way to adjust the print energy to match the ticket stock. There are four functions:
[F0] – Increase the Print Energy setting by 1. If the setting goes above 16, it will wrap around to 1.
[F1] – Decrease the Print Energy setting by 1. If the setting goes below 1, it will wrap around to 16.
[F2] – Print a short test ticket. This will help test the present energy setting.
[F3] – This feature will print 16 test patterns, each at the next energy setting. The printout can be reviewed and the best energy level for the ticket stock selected. Remember that the higher energy settings will slow the printing speed.

12.2.1.4 [F3] - Image RAM Test
This will do a full read/write test on the entirety of both Image RAM pages. This test should only be performed if there are printing anomalies that cannot be explained any other way. This test will take about 30 seconds. If successful, you will hear 5 rapid beeps. If it fails, you will hear the standard error sequence for a System RAM error.

12.2.2 Burn-in and Cut Tests
These tests are used as tools by the factory to insure proper operation under continuous cycling operations.

12.2.3 [F3] – Serial Port Test
This will perform a loop-back test to confirm that the printer’s serial port can send and receive data along the RS-232 serial port. This test requires an adapter that connects pin 2 to pin 3, and pin 7 to pin 8. Once that is plugged into the serial port connector, press [F3] again, and the test will run. A test report will be printed.

12.3 Hex Dump Mode Functions
The Hex Dump Mode provides two functions, Hex Data Dump and Data Rate Measurement. These are advanced diagnostic tools that can aid in solving data transmission problems.

12.3.1 Hex Data Dump
Enter Hex Data Dump by pressing and holding F2 and F3 (see section 4.5.2.1). This is the default function. After entering this mode all data sent over the interface from the host PC be printed in both hexadecimal and ASCII. This printout can assist the programmer or technician while debugging a printing cable problems. Note that even the shortest ticket can produce a very large hex dump. This situation is greatly magnified with narrow tickets. If investigating the initialization parameters for a printing problem, be prepared to turn off the printer after a few pages have been printed.

12.3.2 Data Rate Measurement Test
The second option of Hex Dump Mode is the Data Rate Measurement Test. It requires additional switch presses once in the Hex Data Dump mode. Press [F0]; then [F1], then [F0] to place the printer into the Data Rate Measurement mode. At this time the print data is sent from the host. The printer will read all of the data, but it will not print it. After the data is all sent, the printer calculates the average data rate, and prints a short ticket summarizing this information.

12.4 Periodic Maintenance

12.4.1 Paper/Registration Mark Sensor Maintenance
Under heavy use conditions periodic cleaning of these sensors may be required to insure that the accumulation of paper dust does not impair their operation. The two reflective sensors are located on the ticket tray just after the entry slot into the mechanism. The sensors are covered with protective shield, which must be removed for cleaning. Refer to the drawing below for the location of these sensor covers: 12.4.1.1 ; 12.4.1.2 ; 12.4.1.3. Cleaning is accomplished by using a Q-tip dipped with alcohol, swiping the Q-tip across the sensors lens removing debris.
12.4.1.1 Sensor Cleaning Access – ITX 2000/3000 – Fixed Width Models

12.4.1.3 Sensor Cleaning Access - ITX 2004AS/3004AS – Adjustable Width Models
12.4.2 **Printhead Cleaning**

The printhead and drive roller should be cleaned periodically to eliminate the build up of thermal ink residue and paper dust. This is easily accomplished by using a soft, isopropyl alcohol impregnated, cleaning sheet. This sheet should be fed through the paper path, several times. To assist with this operation a diagnostic support tool is used.

Caution: Although printhead cleaning is a normal, and recommended, preventative maintenance activity, if frequent cleaning of heavy buildup is occurring, this is a symptom that something is wrong with the media/printer thermal operating relationship. **Heavy buildup will shorten the life of the printhead because it blocks the flow of thermal energy, from the printhead, to the media, which is acting as a heat-sink path for this energy.** If the thermal media is depositing onto the printhead it is most likely due to a quality problem: the media has not been cured properly, or the press-printed inks are not thermally stable and are burning off, etc. Also, it could be due to a mismatch of the media’s thermal response characteristic to the printer’s thermal energy delivery level. If very fast media is being used, the printer’s thermal energy may need to be reduced to better match it. The best solution is to select the thermal media that is compatible with the printer’s normal (default) energy level setting.

12.4.2.1 **Printhead Cleaning Diagnostic Tool**

The entry into this tool is a Power On Switch Panel Operation, refer to section 12.1. Once in this mode, the printer becomes a simple paper movement device. A isopropyl alcohol impregnated cleaning sheet is required to clean both the printhead and the driver roller. The front panel switches serve to direct the paper forward or backward through the paper path.

- [F0] – Move forward slowly.
- [F1] – Move forward rapidly.
- [F2] – Move backward slowly.

12.4.2.2 **Printhead Cleaning Cards**

Printhead cleaning cards are available from Practical Automation.

<table>
<thead>
<tr>
<th>ITX MODEL</th>
<th>Cleaning Card Width</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITX 2002 / ITX 3002</td>
<td>2.00" (50.8 mm)</td>
<td>A15-70051-1</td>
</tr>
<tr>
<td>ITX 2003 / ITX 3003 / ITX 2003A / ITX 3003A</td>
<td>3.25" (82.6 mm)</td>
<td>A15-70051-2</td>
</tr>
<tr>
<td>ITX 2004A / ITX 2004AS / ITX 2004A / ITX 3004AS</td>
<td>4.00" (101.6 mm)</td>
<td>A15-70051-3</td>
</tr>
</tbody>
</table>

Note:

1. The instructions on the cleaning card package are outdated. The instructions listed in section 12.4.2.1 are more current and should be used.
2. The adjustable printers models “A” and “AS” should be adjusted to the maximum width before cleaning.
13 POWER SUPPLY INFORMATION

13.1 Power supply D.C. Output Cable
The ITX Series Printer uses an external, 24V, 60 watt power supply. This power supply is connected to the printer by a shielded DC power cable with a 5-pin circular DIN input connector on its output. This cable mates to the printer's 8 pin circular DIN mounted on the rear panel of the printer. The pin-out for both connectors is shown below. Note only the first five pins are active for the 60 Watt power supply.

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL TITLE</th>
<th>SIGNAL DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POWER GROUND</td>
<td>POWER RETURN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>POWER GROUND</td>
<td>POWER RETURN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+24 VDC</td>
<td>POWER INPUT</td>
<td>+24 VDC @ 2.3A Avg.</td>
</tr>
<tr>
<td>4</td>
<td>POWER GROUND</td>
<td>POWER RETURN</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+24 VDC</td>
<td>POWER INPUT</td>
<td>+24 VDC @ 2.3A Avg.</td>
</tr>
<tr>
<td>6</td>
<td>POWER GROUND</td>
<td>POWER RETURN</td>
<td>Not Used</td>
</tr>
<tr>
<td>7</td>
<td>+24 VDC</td>
<td>POWER INPUT</td>
<td>Not Used</td>
</tr>
<tr>
<td>8</td>
<td>+24 VDC</td>
<td>POWER INPUT</td>
<td>Not Used</td>
</tr>
<tr>
<td>SHELL</td>
<td>CHASSIS GROUND</td>
<td></td>
<td>Chassis ground-power cable shield connection</td>
</tr>
</tbody>
</table>

13.2 Power Management
The ITX printers are budgeted to operate from a power supply of 60 average watts. The short-term power demands can be significantly higher than 60 watts. To provide for this, the printer controller has a large input capacitor reservoir. Also, it uses on-the-fly power management. The power management scheme takes advantage of the switching power supply's characteristic of being able to deliver high short-term power demands. It then forces average power compliance over time.

13.3 Power Supply Requirements

OUTPUT VOLTAGE: 24VDC (TOL. ±5% Max)
OUTPUT CURRENT (Min): 0.0A (Average)
OUTPUT CURRENT (Max): 2.3A (Average)
OPERATING TEMPERATURE: 50º C (Max)
INPUT VOLTAGE: 90 TO 264 VAC
PRINTER LOAD CAPACITANCE: 10,000 uF
INRUSH CURRENT: 8A Into 10,000 uF
PRINTING POWER: 75w (Max) – 5 seconds
SHORT TERM POWER: 100w (Max) - 20 mSEC (Max).
AVERAGE POWER: 60w (Max)
IDLE POWER: 4w (Nominal)

13.3.1 Power Supply Additional Requirements
The DC output cable connection to the printer must be a shielded cable. The load of the printer presents a rapidly changing, pulsed current drain to the attached power supply. When designing or selecting an alternate power supply this dynamic load must be taken into consideration. The printer system’s EMI/EMC and safety compliance are referenced to the power supply provided by Practical Automation. The power supply must have short circuit and fault energy limit protection to comply with the required safety standards. It is the responsibility of the system engineer, when changing to an alternate power supply, to insure continued functional, safety and EMI/EMC compliance is maintained.
14 OPERATOR RE-PROGRAMMING OF FLASH MEMORY - PROCEDURE

14.1 General

Using this procedure the printer’s operating system can be re-programmed with new firmware, from a data file. This should only be done by technical personnel who are familiar with performing this type procedure.

Although, the process is very simple, under some version update conditions, if the printer lost power before the operation was completed successfully, there is a possibility that it could leave the printer inoperable, requiring it to be returned to the factory for programming (via the BDM interface). The “README.TXT” text file, distributed with the firmware data file, will have information regarding the update conditions associated with that particular version of firmware.

14.2 Requirements

To accomplish the loading of new firmware the following are required:
-1- A new firmware data file obtained from the factory or downloaded from our Website.
-2- An ITX printer with a Parallel or Serial RS232 Data interface.

Note: For the USB Interface, this technique cannot be used.

A Parallel Interface module could be substituted into the printer to perform the firmware update and the re-install the USB for normal printer use. Also, Practical Automation will provide a software tool for the USB case. Contact factory Technical Support for this tool.

-3- A Parallel or Serial data cable.

-4- A PC to read the firmware data file and copy it to the printer’s data interface using a DOS copy command technique.

-5- The printer and the PC connected with the data cable.

-6- The printer entered into the flash load mode.

14.3 Flash Re-Programming Process

14.3.1 Entering the Flash Load Mode

The printer will go into the flash load mode in three ways:
-1- Automatically, if the printer detects a failure of the flash memory’s checksum, during its power-up testing operations.
-2- Manually, by powering on the printer while holding the [F0] and [F1] switches pressed.
-3- Command Driven, by the host computer. Refer to the ITX Programmer’s Manual for details on this mode of programming.

The entry into the flash load mode is signaled by a long, continuous beep, approximately 5 seconds. For the manual entry path, the switches need to be held only until this long beep starts. Wait until the beep stops, however, before starting the flash loading process below.

14.3.2 Flash Data Loading

The Flash Data Loading procedure is simply to copy the new Binary Data image file to the printer’s data port, after the printer is flash load mode. Because of the large amount of data, using the Parallel data interface is the preferred interface to re-program the Flash Memory. The following example uses DOS batch file commands to illustrate this process. The firmware data file also includes a DOS Batch file should be used to execute this loading command.

Copy /B FWITX##.BIN LPT1:

The “/B” permits Binary Data to be sent without detecting data as control characters. “LPT1:” is the designation for the output parallel port. The file containing the Flash Data has a “.BIN” suffix.

The Serial Interface can also be used, however, due to the slower data rates it can take up to 10 minutes to load the flash. The process in general is the same as in parallel with the exception that the source PC’s serial port and the printer’s serial interface setup need to match.

DOS Shell Access: This method of using the Windows DOS Prompt can sometimes be blocked by drivers attached to the port. All drivers attached to the port where the update will take place should be re-assigned to “file”. Temporarily change the driver’s properties to accomplish this during the firmware update process and then restore it (them) when complete.
14.3.3 Flash Loading Completion

Once the flash loading process has been started the printer will read the data and program the flash memory. When the loading has been completed successfully the ATTN/ERR LED will go out. After a short delay, the printer will automatically reset itself and be ready for operation. After the ATTN/ERR LED is out, it is safe to remove power from the unit. If the loading was unsuccessful the ATTN/ERR LED will remain on, the long 5-second load beep will reoccur. This indicates that a re-load of the data is necessary. The power must not be removed. The copy command should be re-invoked to re-start the loading process.

14.3.4 Flash Loading Time

The loading time is substantially affected by the transfer rate of the PC. If the FWITX##.BIN file is copied from a hard drive of a fast PC to the printer, the typical loading time will be approximately 15 to 30 seconds (Parallel Interface). If the source PC is slow and the file is copied from the floppy drive the loading time can be 3 to 10 times longer. The flash loading time is measured from the time the ATTN/ERR LED comes on and until it goes out.

14.3.5 Warning

When the copy command is initiated and in response to data passing over the interface, the printer will respond with a slight blinking of the READY LED. Once the flash memory has been erased, the ATTN/ERR LED will be on continuously for the remainder of the loading process. Note: If the printer loses power while this LED is on, the printer will not be able to complete the loading process. If this occurs, attempt to reprogram the flash as described above. If any step is not successful after a power failure, contact the factory. The printer may require re-programming at the factory.
15 FGL APPLICATION PROGRAMMERS INFORMATION

The FGL command language and other programmer related information is included in separate ITX 2000/3000 Programmer’s Manual. Refer to this manual for this level of technical information.
16 ITX Firmware Options for Windows

Refer to section 2.3 for a detailed discussion of which firmware is best for your application.

16.1 ITX ‘G’ Version Firmware

The “G” Version firmware can be installed at the factory, or loaded in the field. With the “G” firmware and a Printer Driver installed on the host computer (listed below) the ITX “G” firmware printer provides WYSIWYG (“What-You-See-Is-What-You-Get”) printer function to programs operating in the Windows environment. Also, the ITX 2002/3G printers emulate the GTX 2002/3 printer and can be used to replace GTX printers with the more advanced ITX printer that provides higher print speed.

16.1.1 Windows ‘G’ Driver Selection Table

The table below describes the Windows drivers to be used with the ITX “G” firmware printers. These drivers can be downloaded from our website (www.practicalautomation.com).

<table>
<thead>
<tr>
<th>Raster Printer Information</th>
<th>Operating System - Printer Driver Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware</td>
<td>Printer</td>
</tr>
<tr>
<td>Version</td>
<td>Model</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>G</td>
<td>ITX2002G</td>
</tr>
<tr>
<td>V1.09 or Later</td>
<td>ITX2002G</td>
</tr>
<tr>
<td>G</td>
<td>ITX2003G</td>
</tr>
<tr>
<td>V1.09 or Later</td>
<td>ITX2003G</td>
</tr>
<tr>
<td>G</td>
<td>ITX2004G</td>
</tr>
<tr>
<td>V1.09 or Later</td>
<td>ITX2004G</td>
</tr>
<tr>
<td>G</td>
<td>ITX2005G</td>
</tr>
<tr>
<td>V1.09 or Later</td>
<td>ITX2005G</td>
</tr>
<tr>
<td>G</td>
<td>ITX2006G</td>
</tr>
<tr>
<td>V1.09 or Later</td>
<td>ITX2006G</td>
</tr>
</tbody>
</table>

Black Bold: designates the latest driver(s) for a given printer model.

Interface: P = Parallel IEEE1284; S = Serial RS232/ U = USB Interface

GTX: The V1.xx GTX 2000 Printer Drivers are available and function with the ITX 2000 printers (of any firmware level). The V2.xx printer drivers require updated printer firmware.

V2.xx: The V2.xx printer drivers render the image as the V1.xx drivers and add bi-directional capability. Refer to the PDF document included with this driver for a complete explanation.

V1.09 or Later: The V1.09 or Later driver for the ITX2/3003 Printer Driver has a fixed max. print area of 3.25”. To match the ITX3003 Adjustable 2" to 3.25" image, the right-side margin (or equivalent) must be adjusted by the application.

Notes:
- “PA” denotes the driver file number, w/o the suffix, is the driver’s file designation. The suffix is appended only to distinguish multiple copies of the same driver that are on the WEB site, since the ITX uses some GTX drivers.
- “RL” denotes the Reverse Landscape Driver provides an output image orientation to match that of the ETX/LT printers. See the PDF document included with this driver for a complete explanation.
- “A” denotes the driver’s file version. The file on the website will be the latest version. Ex: IGX202M2.zip is V2.02 for this driver.
- “V” denotes the driver file version. The file on the website will be the latest version. Ex: IGX202M2.zip is V2.02 for this driver.
16.2 ITX FGL Firmware Driver

There is a Windows driver for printers with FGL firmware. In general, the ‘G’ version is preferred (see discussion in section 2.3). If your application requires an FGL Windows driver, refer to the table below.

16.2.1 Windows FGL Driver Selection Table

The table below describes the Windows drivers to be used with the ITX FGL Firmware printers. These drivers can be downloaded from our website (www.practicalautomation.com).

<table>
<thead>
<tr>
<th>FGL Printer Information</th>
<th>Operating System - Printer Driver Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Firmware</td>
<td>Printer</td>
</tr>
<tr>
<td></td>
<td>V1.00 - V1.17</td>
<td></td>
</tr>
<tr>
<td>FGL</td>
<td>ITX 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 2002A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 2003A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 2004AS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3003A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3004AS</td>
<td></td>
</tr>
<tr>
<td>FGL</td>
<td>ITX 3002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3003A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITX 3004AS</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>FGL</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **FGL**: FGL printers have Windows driver support for firmware V1.18 and above only. Length and width margins must always be set by the application.
- **XTX**: XTX drivers were developed for the older ETX/LTX printers and will work adequately for the Win95/98/ME family.
- **PA**: Parallel (IEEE1284); **S**: Serial RS232; **U**: USB Interface
- **Black Bold**: designates the latest driver(s) for a given printer model.
16.3 Installing the Windows Driver

To load the Printer Driver the generalized procedure is to, click on Start => Settings => Printers, and then double-click Add Printer to invoke the Windows Add Printer Wizard. Then follow the Windows, on screen, instructions to load the driver. Note, however, that the installation procedure is somewhat different for each data interface (Parallel, Serial, USB). Download the proper Driver Installation instructions from our website (www.practicalautomation.com).

16.3.1 Interface Choices – G Version Firmware Printer
Parallel IEEE-1284 and USB 2.0 (Full Speed) Interfaces are available for the ITX-G Printer. The Serial Interface is NOT supported on the ITX-G printer. The large amount of data required, for the Windows WYSIWYG function, makes this interface impractical.

16.3.2 Interface Choices – FGL Version Firmware Printer
The FGL firmware will work well with a Parallel, USB, or RS-232 Serial interface.

16.3.3 Adaptive Print Speed (G-Only)
The data delivery rate, of a Windows parallel port, varies with the specific operating system chosen, the PC’s clock speed and BIOS settings (ECP with DMA is the fastest). At the start of data, the ITX-G printer samples the host computer’s parallel port data delivery rate. It adapts the ensuing ticket’s print speed to match the sampled rate. This data rate and print speed matching provides for best print quality. This is the printer’s default setting. This can be disabled, and fixed by the user, by changing the selection of the “IPS CLAMP” setting.

16.3.4 Printer Status Information
The ITX-G Printer Status Information is based on that of the GTX2000/GTX3004A Ticket Printers. Refer to the GTX User’s Manual for this information.
17 SPECIFICATIONS

Specifications subject to change without notice.

Printing Method: Direct Thermal

<table>
<thead>
<tr>
<th>Print Speed:</th>
<th>10.0 in/sec Max. (254 mm/sec)</th>
<th>ITX 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.0 in/sec Max. (203 mm/sec)</td>
<td>ITX 3000</td>
</tr>
</tbody>
</table>

FGL Resident Fonts:
- 5x7; 5x9 (OCRA); 8x16; 13x20 (OCR3B); 17x31 (OCRA);
- 17x51 (OCR3B); 18x30 (Courier); 20x40 (Courier); 25x41 (Bold Prestige); 25x49 (Script); 30x52 (OCR3B); 46x91 (Orator)

FGL Resident Bar Codes:
- Code 39, Interleaved 2 of 5, EAN 13, EAN 8, UPC;

FGL Graphics:
- Dot addressable graphics; box and line drawing commands;
- downloadable fonts and logos; PCX file support; PCX image rotation (0, 90, 180, 270 degrees) and multiplication.

Printer Firmware Options:
- The print characteristics (fonts, bar-codes etc) noted on this data sheet refer to the standard firmware version. This firmware “emulates” the commonly used Ticket Programming Language (Boca’s FGL).
- The “G” version firmware is Windows® WYSIWYG Printer Drive.
- Function. Printer’s firmware can be updated over the Data Interface. Also, the “G” firmware permits the ITX printers to emulate of the GTX ticket printers.

Print Width:
- 1.89” (48.0mm) (384 dots) ITX 2002
- 3.15” (80.0mm) (640 dots) ITX 2003
- 1.92” (48.8mm) (576 dots) ITX 3002
- 3.20” (81.3mm) (960 dots) ITX 3003
- 3.86” (98.0mm) (784 dots) ITX 2004/AS
- 3.89” (98.8mm) (1168 dots) ITX 3004/AS

Print Length:
- 10.9” (276.9mm) Max.

Paper Width:
- 2.00” +/ -0.015” (50.8mm) ITX 2002/3002
- 3.25” +/ -0.015” (82.6mm) ITX 2003/3003
- 2.00” - 2.35” +/ -.015” (50.8 - 82.6mm) ITX 2003A/3003A
- 2.00” - 4.00” +/ -.015” (50.8 –101.6mm) ITX 2004/AS / 3004/AS

Ticket Length:
- 2.0” (50.8mm) Min.

Paper Type:
- Thermal Tag Stock

Paper Caliper:
- 0.004” - 0.0075” (0.1 - 0.19mm) typical

Paper Feed:
- Friction

Data Interface (Plug-in Option Modules):
- **Parallel:** IEEE-1284 (Bi-Directional)
- **Serial:** RS-232 (Busy & XON/OFF to 57.6K Baud)
 - (Not supported with “G” firmware)
- **USB:** Full Speed V2.0 Compliant

Special Purpose I/O:
- 8 Pin Mini-Din Connector for Low Paper & Auxiliary Power Driver.

Interface Cable:
- IEEE-1284 A-B Cable (DB25M/C36M)
- RS-232 Cable (DB9M/DB9F)
- USB A-B Cable (A/B)

Cutter:
- Life: 2x10^6 cuts (typical), 1x10^6 cuts (min.)
 - Cut Cycle Time: 300mSec

Power Requirements:
- 24 VDC, 60 W max average, provided by PS60-14 universal input power supply 90-264VAC, 47/63 Hz, 1.6 A Max.

Regulatory Compliance
- **CE Mark:** Compliant
- **Safety:** ANSI/UL 60950 3rd Edition
- **CB SCHEME:** Compliant
- **EMI/EMC:** FCC Part 15 Class A
- **Environmental:** Operating: +5 to +40°C
 - Storage: -5 to +65°C
- **Humidity:** 20-85% relative, non-condensing

User Switches:
- Power On/Off, Select (F0), Test (F1), Line Feed (F2) & Form Feed (F3)

Indicators:
- Power/Paper (green LED), Ready (green LED) Attention/Error (amber LED), Audio Beeper

Ticket Delivery Options:
- **pITX Desktop Models:** with cutter & ejector (the ticket is ejected after cutting) or with tearbar (no cutter installed).
- **pPTX CounterTop Models:** with cutter & stacker (the ticket is stacked and held after cutting) or with tearbar (no cutter installed). The pPTX adjustable models “A” and “AS” come with tearbar only.
- **eITX Desktop Models:** with cutter & ejector (the ticket is ejected after cutting).
- **kITX Kisok Models:** with cutter & ejector (the ticket is ejected after cutting).

Setup Parameters:
- All optional control features can be changed by user-friendly switch panel entry.

Printer Status:
- Printer status information such as Low Paper, Out of Paper, Ticket Count, and System Errors are available to the host PC via IEEE-1284, USB or Serial RS-232 reverse channel communication.

Download Memory:
- 512K Flash Standard for storage of user Fonts and Logos, expandable to 1.5 Meg (Special Factory Order)

Print Image Memory:
- 1 or ½ Meg. Byte depending on configuration.

Maintenance:
- Modular design for easy component replacement.
18 REPLACING AN ETX 2000 PRINTER WITH AN ITX 2000 PRINTER

The ITX 2000 printers can easily drop in and take the place of ETX 2000 printers in the field. The ITX 2000 printer is a newer more advanced printer. It brings with it higher print speeds, smaller packaging, improved interfaces as well as all of the legacy ETX features to permit it to replace ETX’s that have been deployed, while bringing advanced features required by the changing marketplace.

This document breaks down the areas, which need to be understood in order to make the transition, from one product to the other.

18.1 Interface:

18.1.1 Selection:

ETX: The ETX has a 25 pin interface connector mounted to the printer’s rear chassis. An internal ribbon cable is attached to this external connector. The other end of the ribbon cable plugs into a Parallel or Serial interface connector on the printer controller PCB. The selection of interface is made by: -1- the placement of this internal ribbon cable and -2- the selection of DIP-switches mounted on the printer controller PCB. The interface being used can be easily determined by printing the system status report (power on holding in the F0 switch). To change interface from Serial to Parallel or, vice versa, the printer chassis is opened, the DIP switches selections are made and the ribbon cable is moved to target interface connector on the printer controller PCB.

ITX: The ITX has plug-in interface modules. The interface module is plugged in from outside of the printer chassis. At power up, it is automatically recognized by the printer controller. If it is a Parallel or USB interface nothing else needs to be done. If it is a Serial Interface the DIP switches, on the modular interface PCB, need to be set to the correct serial communications settings.

18.1.2 Cables:

Parallel:

ETX: The ETX uses a 25 pin to 25 pin Parallel cable.

ITX: The ITX uses a standard 36 pin to 25 pin IEEE1284 A/B cable.

Serial:

ETX: The ETX could have several different cable configurations depending on the interface flow control method and if it is connected to a PC that has a 25 or 9 pin Serial port.

ITX: The ITX typically connects to a standard (newer) PC’s 9 pin Serial port with a straight through wired 9 pin-to-9 pin serial cable.

USB:

ETX: The ETX does not have a USB interface option.

ITX: The ITX uses a standard 4 pin USB 2.0 A/B cable.

18.2 Power Supply:

ETX: The ETX has a self-contained power supply. The selection for 230/115 VAC operation is made with a jumper internal to the power supply chassis. Additionally, the line fuse is changed to match the input current based on the operating voltage. The A.C. power connector is a IEC 320 receptacle.

ITX: The ITX has a small external power supply module with a universal input voltage range. Voltage selection is automatic. It has an IEC 320 receptacle to connect a power cord. Keeping the power supply external reduces the size of the ITX printer chassis, compared to the ETX. The power supply module is small and completely self-contained and can be mounted to any flat surface using an optional mounting bracket. With its attached 4-foot output cable, it can easily be located in the target application somewhere along the input line cord’s path.
18.3 Physical Profile:
All ITX models are physically smaller than the equivalent ETX. The following is a model-to-model size comparison:

18.3.1 Locked Internal Ticket supply:
- **ETX:** 9.00” W x 12.00” H x 18.75” D
- **eITX:** 8.15” W x 12.00” H x 18.36” D

18.3.2 Desktop Printer:
- **µETX:** 8.75” W x 9.00” H x 12.00” D
- **µITX:** 6.65” W x 6.80” H x 10.35” D

18.3.3 Countertop Mountable Printer:
- **pETX:** 8.63” W x 11.88” H x 8.96” D (as mounted in counter top)
 Mounting Panel: 10.25” x 10.25”
- **pITX:** 6.65” W x 10.30” H x 6.66” D (as mounted in counter top)
 Mounting Panel: 7.50” x 7.50” *(Note: a pETX to pITX adapter plate is available for mounting a pITX in a cutout sized for a pETX)*

18.3.4 Kiosk Mountable Printer:
- **cETX:**
 Printer: 6.13” W x 5.16” H x 10.13” D
 Controller/Power Supply: 13.12” W x 5.25” H x 8.38” D
- **kITX:**
 Printer/Controller: 6.50” W x 5.90” H x 10.83” D
 Power Supply: 3.00” W x 1.69” H x 5.75” D *(common for all ITX models)*

18.4 Printer Language:
- **ETX:** The ETX emulates Boca’s FGL programming language.
- **ITX:** The ITX has two firmware sets. One emulates Boca’s FGL programming language and a second that is optimized for WYSIWYG printing, in Windows, using a Windows Printer Driver. The ITX’s FGL firmware is completely backward compatible with the ETX’s FGL firmware and has additional new commands added to the language. This is the firmware choice to use when replacing an ETX. The second “G” firmware (WYSIWYG) set is completely compatible with the GTX 2000 printers and additionally enhanced for optimum Windows performance.

18.5 Printer Driver:
- **ETX:** The ETX has a Windows printer driver that works with the printer’s FGL firmware set.
- **ITX:** An ETX, backward compatible FGL Windows Printer Driver, that will function with the ITX printer’s FGL firmware is available. This driver will also have advanced features (reverse channel status, USB support, etc.). It requires that the ITX printer be at firmware version V1.18, or later.

18.6 Printer Status Monitoring:
- **ETX:** The ETX has limited printer status capability. The Parallel interface only supports the Parallel Port’s legacy status, which is confined to the hardware status bits available on the Parallel Port interface connector (Busy, Select, Paper Error, Fault). The Serial interface supports more detailed reverse channel status, including errors.
- **ITX:** The ITX interfaces, (Parallel, USB and Serial), support all of the ETX’s legacy status capabilities, as well as complete reverse channel communications for complete printer status including: Errors, Firmware version, Ticket count, Electronic serial number, Paper and Low Paper condition, etc.
18.7 Ticket Stock:

18.7.1 Thermal Coating:

ETX: The ETX, in most applications, is operating with slow to medium speed thermal ticket stock. When the ETX’s print energy has been adjusted to an acceptable printed image, on this stock, the resulting printer speed is in the 5.5 to 6.5 IPS range.

ITX: The ITX is optimized to use faster media that will image at print speeds of 8 to 10 IPS. When matching to slow or medium imaging speed ticket stock, the ITX’s print intensity will need to be set higher (6 to 16 for darker print). This is a trade off of print speed for image energy to accommodate the slower media. The ITX is designed to do this without risk to the printhead’s reliability.

18.7.2 Registration Marks:

ETX: The ETX printer monitors the ticket movement using black marks (registration marks) located on the bottom side of the ticket. These registration marks are detected by printer’s optical sensors that track the tickets through the printer. The printer’s operational parameters: ticket length, start of print, cut position, etc. are all determined by these registration marks.

ITX: The ITX printers use the same registration mark method, as the ETX, printers. Tickets that are used in the ETX can be used in the

18.8 Conversion Process Steps:

-1- Determine the **Part Number and Model Number of your ETX printer** that will be replaced by an ITX 2000 printer. Use the table and notes below to make the ITX cross reference selection.

-2- Print out the **ETX’s F0 Status Report**. This will provide information on the Interface, its settings (if Serial) and the print intensity settings. This will answer many questions about how the ITX 2000 will need to be setup up to match the ETX.

-3- Based on the learned **Interface Type** determine **what interface cable will be required**.

 If it is a **Parallel Interface** an off the shelf IEEE1284 A/B cable, available at any computer store, can be used, or this cable can be purchased from Practical Automation.

 If it is a **Serial interface** it may require the your installation engineer to match the ETX’s 25 pin connector’s pin-out to the of the ITX’s 9 pin. This is usually a fairly straight-forward process. In most cases when connecting to a 9 pin serial connector, on the host PC, all that is required is a straight through 9 pin direct pin-to-pin cable. This is available off the shelf, at most computer stores, or can be purchased from Practical Automation. Also, the DIP switches, on the ITX’s Serial Interface module, will need to be setup to match the ETX’s serial setting that were determined in step -2- above.

-4- The ITX’s **Power Supply and Physical Printer Profiles** are smaller than the ETX’s. The ITX printer will always fit and the external power supply is small enough easily be able to find a spot, somewhere along the line cord path. **Note** that the ITX’s power supply is not included in the model number noted above, and must be ordered separately.

-5- If the target is **pITX** then there is an optional collar available to adapt the larger ETX counter top hole to the smaller ITX face plate profile.

-6- The **Printer Language** for the ETX is FGL so an FGL ITX 2000 is the printer that matched the ETX. The ITX2000 will operate with the same data stream and produce the same ticket as the ETX. **Note:** In the unlikely event that a customer finds an exception, to this FGL language matching performance, please advise Practical Automation. Engineering will review the technical details and correct it, with a firmware update, where possible.

-7- The ITX 2000, with **firmware** later than V1.18, will support the FGL Windows Printer Driver that is equivalent to the one that the ETX printers use.

-8- The **Ticket Stock** will likely require that the ITX’s print energy be raised to match the slower media used on the ETX. See section (9.2.1.2) for information on this topic.
ETX 2000 to ITX 2000 Model Number and Part Number Cross Reference Table

Locked Internal Ticket Supply

<table>
<thead>
<tr>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15-10133-P</td>
<td>ETX-2002E-I (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a</td>
<td>B15-11149-1</td>
<td>eITX2002C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10135-P</td>
<td>ETX-2002E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10133</td>
<td>ETX-2002E-I (115V, SERIAL & FGL)</td>
<td>1a,3a,4a</td>
<td>B15-11149-2</td>
<td>eITX2002C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
<tr>
<td>C15-10135</td>
<td>ETX-2002E-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10134-P</td>
<td>ETX-2003E-I (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a</td>
<td>B15-11149-4</td>
<td>eITX2003C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10136-P</td>
<td>ETX-2003E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10134</td>
<td>ETX-2003E-I (115V, SERIAL & FGL)</td>
<td>1a,3a,4a</td>
<td>B15-11149-5</td>
<td>eITX2003C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
</tbody>
</table>

Counter Top Mountable

<table>
<thead>
<tr>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15-10229-P</td>
<td>pETX-2002R-I (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a,5a</td>
<td>B15-11037-1</td>
<td>pITX2002C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b,5b</td>
</tr>
<tr>
<td>C15-10230-P</td>
<td>pETX-2002R-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10229</td>
<td>pETX-2002R-I (115V, SERIAL & FGL)</td>
<td>1a,3a,4a,5a</td>
<td>B15-11037-2</td>
<td>pITX2002C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b,5b</td>
</tr>
<tr>
<td>C15-10230</td>
<td>pETX-2002R-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10393-P</td>
<td>pETX-2003R-I-9 (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a,5a</td>
<td>B15-11037-4</td>
<td>pITX2003C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b,5b</td>
</tr>
<tr>
<td>C15-10393</td>
<td>pETX-2003R-I-9 (115V, SERIAL & FGL)</td>
<td>1a,3a,4a,5a</td>
<td>B15-11037-5</td>
<td>pITX2003C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b,5b</td>
</tr>
</tbody>
</table>

Desktop Printer

<table>
<thead>
<tr>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15-10129-P</td>
<td>uETX 2002E-I (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a</td>
<td>B15-11035-1</td>
<td>uITX2002C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10131-P</td>
<td>uETX 2002E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10129</td>
<td>uETX 2002E-I (115V, SERIAL & FGL)</td>
<td>1a,3a,4a</td>
<td>B15-11035-2</td>
<td>uITX2002C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
<tr>
<td>C15-10131</td>
<td>uETX 2002E-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10130-P</td>
<td>uETX 2003E-I (115V, PARALLEL & FGL)</td>
<td>1a,2a,4a</td>
<td>B15-11035-4</td>
<td>uITX2003C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10132-P</td>
<td>uETX 2003E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10130</td>
<td>uETX 2003E-I (115V, SERIAL & FGL)</td>
<td>1a,3a,4a</td>
<td>B15-11035-5</td>
<td>uITX2003C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
<tr>
<td>C15-10132</td>
<td>uETX 2003E-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kiosk Mountable Printer

<table>
<thead>
<tr>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
<th>PART #</th>
<th>MODEL DESCRIPTION</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15-10460-P</td>
<td>cETX 2002E-I (115V, PARALLEL & FGL)</td>
<td>1b,2a,4a</td>
<td>B15-11122-1</td>
<td>kITX2002C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10462-P</td>
<td>cETX 2002E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10460</td>
<td>cETX 2002E-I (115V, SERIAL & FGL)</td>
<td>1b,3a,4a</td>
<td>B15-11122-2</td>
<td>kITX2002C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
<tr>
<td>C15-10462</td>
<td>cETX 2002E-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10461-P</td>
<td>cETX 2003E-I (115V, PARALLEL & FGL)</td>
<td>1b,2a,4a</td>
<td>B15-11122-4</td>
<td>kITX2003C-PARALLEL (115/230, PARALLEL & FGL)</td>
<td>1c,2b,4b</td>
</tr>
<tr>
<td>C15-10463-P</td>
<td>cETX 2003E-I (230V, PARALLEL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15-10461</td>
<td>cETX 2003E-I (115V, SERIAL & FGL)</td>
<td>1b,3a,4a</td>
<td>B15-11122-5</td>
<td>kITX2003C-SERIAL (115/230, SERIAL & FGL)</td>
<td>1c,3b,4b</td>
</tr>
<tr>
<td>C15-10463</td>
<td>cETX 2003E-I (230V, SERIAL & FGL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTES:

1a All ETX, pETX and uETX Printers have an internal Power Supply.
1b The cETX Printers have the Power Supply mounted with the Electronics or available as a separate module.
1c All ITX printers have an external Power Supply (A09-71174).

2a Parallel Cable specified for the ETX, pETX, and uETX, is DCA2506 (A09-71018) and the cETX uses DCA2505 (A09-71015).
2b Parallel Cable specified for this product, DCA1660 (A09-71140).
3a Serial Cable specified for the ETX, pETX, and uETX, is DCA1037 (A09-71017) and the cETX uses DCA2498 (A09-71016).
3b Serial Cable specified for this product, DCA3068 (A09-71091).

4a Overall size of the ETX is (9.2"x18.5"x12") and the pETX and uETX is (10.25"x10.25"x12.25").
4b Overall cETX Mechanism dimension are (6.05"x5.16"x10.12") and Electronics are (13.12"x8.375"x10.25").

5a Cut-out in counter needs to be 9 1/32"x9 1/32" and 10 9/32"x10 9/32" for the Faceplate.
5b Faceplate is smaller so Adapter Plate (B15-20650) is needed to be installed in the same cut-out.
19 APPENDIX

19.1 IEEE 1284 Parallel A-B Cable Schematic

![IEEE 1284 Parallel A-B Cable Schematic Diagram]

Figure 28—IEEE 1284-A (host) to IEEE 1284-B (peripheral) wiring diagram
19.2 ITX 3000/2000 Mechanical Drawings

19.2.1 Mechanical Detail Drawing: uITX Desktop Printer (2.00" and 3.25")

19.2.2 Mechanical Detail Drawing: uITX Desktop Printer (4.00" A and AS Models)
19.2.3 Mechanical Detail Drawing: pITX Countertop Printer (2.00” and 3.25”)

19.2.4 Mechanical Detail Drawing: pITX Countertop Printer (4.00” -AT Model)
19.2.5 Mechanical Detail Drawing: pITX Countertop Printer (4.00” – AST Model)

![Diagram of pITX Countertop Printer]

19.2.6 Mechanical Detail Drawing: kITX Kiosk Printer (2.00” and 3.25”)

![Diagram of kITX Kiosk Printer]
19.2.7 Mechanical Detail Drawing: kITX Kiosk Printer (2/3.25-AC Model)

![Diagram of kITX Kiosk Printer (2/3.25-AC Model)]

19.2.8 Mechanical Detail Drawing: kITX Kiosk Printer (4.00 –AC Model)

![Diagram of kITX Kiosk Printer (4.00 –AC Model)]
19.2.9 Mechanical Detail Drawing: kITX Kiosk Printer (4.00" –ASC Model)

19.2.10 Mechanical Detail Drawing: eITX Desktop Printer (with ticket enclosure cabinet)
19.2.11 Mechanical Detail Drawing: pITX Countertop cutout (2.00" and 3.25")

19.2.12 Mechanical Detail Drawing: pITX Countertop cutout (4.00" Model)
19.2.13 Mechanical Detail Drawing: PS60-14 - ITX Power Supply

19.2.14 Mechanical Detail Drawing: PS60-H Mounting Bracket
19.2.15 kITX Optional Bottom Mounting Plate (2.00" and 3.25")

19.2.16 kITX Optional Bottom Mounting Plate (4.00")
19.2.17 kITX Optional Side Mounting Rails

19.2.18 Output Ticket Baskets:

Model: TB-B23

Model: TB-B4A
19.2.19 pETX to pITX Countertop Adapter Plate - Model ITX-APETX0

19.2.20 Ticket Holder w/ Low Paper Sensor
19.3 Electrical Circuits

19.3.1 Typical Output Driver Application Circuits

For a User With an External Clamp Diode

Using the ITX Power Supply and Internal Clamp Diode

The User may send the Pulse Command (0x1C) at any time, and the Printer will generate a 100mS conduction pulse, with a maximum load of 2 Amps. If the printer is actively printing a ticket, the pulse will be postponed until the printer is done with all printing and cutting activities. Refer to section 7.4 for the Auxiliary I/O connector pin-out.
19.4 Registration Mark Location/Sensor Position - MathCad Template (V1.01)

The sensor for the registration mark is nominally positioned 6.7” behind the cut line (SD). Because the ticket length (T_L) may be shorter than this distance the registration mark that is sensed could be on the first, second or third ticket. Therefore the ticket length is part of the equation to determine where the mark is placed. The ticket's registration mark location is therefore nominally 6.7” behind the leading edge of the ticket for all tickets that are longer than 6.7” and, as noted in the table below (LEtoRM), at a different distance for shorter tickets.

The sensor position has an adjustable range, from SDmin SDmax, which can be used to accommodate a wide variety of tickets with the registration mark position out of the normal location.

Also, if the sensor is on the opposite side of the printer, as it is for adjustable width printers, ticket stock that was made for the sensor on the normal side can be feed in to the printer the opposite way. The sensor's adjustment range can then be used to reference the reg-mark, from the trailing edge of the ticket (which now becomes the new leading edge in this circumstance). The table below (TEtoRM) will show this trailing edge distance, for a given (RMw) registration mark width. Many of these tickets can be accommodated with an alternate sensor position adjustment (Alt_Sensor_Position). This is, however, only a stop gap solution. The tickets should be made correctly: with the reg-mark on the opposite side and at the correct distance (LEtoRM).

A range of ticket lengths (in inches)
A ticket sensor position (SD) and adjust range (in inches)
Distance from the leading edge of the ticket to the reg-mark, for the set (SD) sensor position, is a function of how many ticket lengths are in this distance. Note that "trunc" takes only the integer number from the division of the ticket length into the sensor distance.

$$T_L := 2, 2.25, \ldots, 10$$
$$SD := 6.7 \quad SD_{\text{max}} := 6.8 \quad SD_{\text{min}} := 3.7$$
$$LEtoRM(T_L) := SD - \left[\left(\text{trunc} \left(\frac{SD}{T_L} \right) \right) \cdot T_L \right]$$
$$RM_w := 0.5$$
$$TEtoRM(T_L) := \left(T_L - LEtoRM(T_L) \right) - RM_w$$

Distance to the reg-mark from the trailing edge of the ticket.
Note 1 below, applies to "A" suffix mode Adjustable Printers.

Add 0, 1 or 2 ticket lengths to the TEtoRM distance to see which one will put the mark in the sensor's adjustment range.

Test these values to insure that they are within the sensor's adjustment range and set to zero if they are not.

Select one of the results and format the table for display of the alternate sensor position location

Mark with "---" if can't adjust.
The first three columns list the distance from the leading edge of the ticket to the registration mark (LEtoRM) for a sensor setback position of (SD) for the ticket lengths (TL) shown.

The second three columns define an alternate sensor position that can be used if the ticket stock is feed in the opposite direction. This might be done if the tickets were made with the mark in the wrong side.

<table>
<thead>
<tr>
<th>SD = 6.7</th>
<th>T_L</th>
<th>LEtoRM(T_L)</th>
<th>RM_W = 0.5</th>
<th>TetoRM(T_L)</th>
<th>ALT_Sensor_Position (T_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.70</td>
<td>0.80</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>2.20</td>
<td>-0.45</td>
<td>4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>1.70</td>
<td>0.30</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td>1.20</td>
<td>1.05</td>
<td>3.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>0.70</td>
<td>1.80</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>0.20</td>
<td>2.55</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>3.20</td>
<td>-0.20</td>
<td>6.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>2.95</td>
<td>0.30</td>
<td>4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>2.70</td>
<td>0.80</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>2.45</td>
<td>1.30</td>
<td>5.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>2.20</td>
<td>1.80</td>
<td>6.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75</td>
<td>1.95</td>
<td>2.30</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>1.70</td>
<td>2.80</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.25</td>
<td>1.45</td>
<td>3.30</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>1.20</td>
<td>3.80</td>
<td>3.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.75</td>
<td>0.95</td>
<td>4.30</td>
<td>4.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>0.70</td>
<td>4.80</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.25</td>
<td>0.45</td>
<td>5.30</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.50</td>
<td>0.20</td>
<td>5.80</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.75</td>
<td>6.70</td>
<td>-0.45</td>
<td>6.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>6.70</td>
<td>-0.20</td>
<td>6.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.25</td>
<td>6.70</td>
<td>0.05</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>6.70</td>
<td>0.30</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.75</td>
<td>6.70</td>
<td>0.55</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>6.70</td>
<td>0.80</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.25</td>
<td>6.70</td>
<td>1.05</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td>6.70</td>
<td>1.30</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.75</td>
<td>6.70</td>
<td>1.55</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>6.70</td>
<td>1.80</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.25</td>
<td>6.70</td>
<td>2.05</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50</td>
<td>6.70</td>
<td>2.30</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.75</td>
<td>6.70</td>
<td>2.55</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>6.70</td>
<td>2.80</td>
<td>"----"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first column (single entry) is the sensor setback position used to determine the reg-mark location (normally 6.7").
The second column represents a range of ticket lengths.
The third column shows the distance from the leading edge of the ticket to the reg-mark, for a sensor position of SD.
The fourth column (single entry) is the registration mark’s width in the paper movement direction.
The fifth column is the distance from the trailing edge of the ticket to the reg-mark. Note: when this number is negative the reg-mark is printed across the trailing/leading edge of the ticket(s). The alternate sensor position shown below uses this to make the correct position calculation.
The sixth column shows an alternate sensor position which can be used for these tickets when they are feed in the opposite direction (for a sensor is on the opposite side). Note: "----" indicates the adjustment cannot be made.
End of Document